
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Security and Privacy Policy
Bugs in Browser Engines

Gertjan Franken

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

February 2024

Supervisors:
Prof. dr. ir. W. Joosen
Prof. dr. ir. L. Desmet

Security and Privacy Policy Bugs in Browser Engines

Gertjan FRANKEN

Examination committee:
Prof. dr. ir. D. Vandermeulen, chair
Prof. dr. ir. W. Joosen, supervisor
Prof. dr. ir. L. Desmet, supervisor
Prof. dr. ir. F. Piessens
Prof. dr. C. Diaz
Prof. dr. ir. Y. Berbers
Prof. dr. M. Johns

(Technical University of Braunschweig)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

February 2024

© 2024 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Gertjan Franken, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

Once you meet someone,
you never really forget them.
Even if you can’t remember.

– Zeniba [Miy01]
(Spirited Away, 2001)

Perhaps the most important lesson I have learned during my PhD is that while
you can spend forever refining an idea towards perfection, it will only truly
mature when enriched by diverse perspectives. For this and many other reasons,
the work presented in this dissertation would not have been possible without
the support of many amazing individuals, both directly and indirectly involved.

First off, I would like to thank Claudia Diaz, Frank Piessens, Lieven Desmet,
Martin Johns, Wouter Joosen and Yolande Berbers for taking the time to read
and share your thoughts on this work. I am honored with such a distinguished
jury of experts whose collective efforts contribute to making the digital world a
more secure and privacy-friendly place. Bearing the risk of sounding bold, with
these shared goals, I cannot help but feel like we are all on the same team. I also
extend my thanks to Dirk Vandermeulen for chairing this important milestone.

My academic journey owes its existence to my supervisor Wouter, who gave
me the opportunity to do research. Saying this, the phrase “to do research”
feels like an understatement, considering the sheer level of freedom and the
numerous opportunities you provided. While easy to get accustomed to, these
perks are anything but a given, and I can only imagine that making this a
reality demands more than just a great deal of savvy and dedication. Thank
you for this, for your trust and for an environment that encourages to aim high.

i

ii PREFACE

My co-supervisor Lieven, whose passion for cybersecurity is simply extraordinary,
always managed to elevate our work to the next level. Moreover, your availability
is unparalleled, as my spontaneous drop-ins prefaced by a casual “do you have
5 minutes?” were always met with more time and insights than I had hoped for.
Knowing I could always turn to you provided this sense of comfort that cannot
be overstated. Thank you for lending me your invaluable time, for your genuine
curiosity and for allowing me to take dips in your impressive pool of expertise!

Before embarking on this journey, my sentiments towards academia could be
described as indifferent, maybe even ignorant. This view, however, took a drastic
turn while being mentored during my master’s thesis. Tom, your unconventional
approach to coaching and research felt like a refreshing breeze. The things you
taught me, then and later during my PhD, cover a wide spectrum extending far
beyond the academic scope. Your knack for pulling me out of my comfort zone,
whether on a conference stage or while cruisin’ through the Arabian desert,
has turned many of my maybes into full-on yesses. But above all, your innate
openness created this chill vibe where literally any topic could be discussed
effortlessly. All this has been incredibly supportive on so many levels, and in
short, I genuinely could not have wished for a better mentor. Thank you so
much for the adventures and for sharing your seemingly bottomless pit of ideas!

The terrific WebSecPriv team has been my steady supply of countless laughs on
either side of the department’s walls. At the same time, our weekly meetings
consistently remind me of the unreal amount of motivation and enthusiasm
displayed by this team, often fueling my own. With that said, I am genuinely
excited to see what each of your futures has in store for you, so count me among
your front-row fans. Do not forget me when you are famous! Thank you for
being cool, Angelos, Héloïse, Jeroen, Lieven, Mathy, Tom, Victor, Vik and Yana.

The occasional late-night shift and deadline rush were made a lot more bearable
by past and current office mates, whether it involved crashing RC helicopters,
sharing artisanal memes or solving a murder case. I would have liked to say
that no hardware was harmed in the process, but the hardware would beg to
differ – I wish you a lifetime of scratchless displays, Vik! Thank you for making
me prefer our campus office over my home office and for putting up with my
frequent desk lunches, Alexander, Andreas, Ansar, Ilias, Jan, Jeroen, Kristof,
Laurens, Mathy, Pieter-Jan, Stef, Tom, Victor, Vik, Vincent, Weihong and Yana!

A big shoutout to all west-coast mile-eaters, with whom I discovered the true
essence of philanthropic pretzels and ho-made pies. I would endure the mildly
uncomfy seating in our snugly filled van for its cozy vibe any day, and will always
remember our swim surrounded by the breathtaking scenery at Lake Powell.
Plus, this doubled as the best way to bond with some of COSIC’s bright minds!

PREFACE iii

Much appreciation goes out to our fantastic business office, not only for lending
me all the e-readers, laser pointers, monitors and laptops I could dream of, but es-
pecially for the warm and reassuring chats in between. Thank you, An, Annelies,
Annick, Bart and Katrien! Also, many thanks for your efforts towards science
outreach – a truly underrated aspect of research. This sentence is an easter egg.

Kudos to Dimitri and Vincent for our cozy little chatroom that even lived
on for quite a while after the pandemic, and made me choke on my morning
coffee plenty of times. A big thanks to Laurens for the loads of technical and
non-technical insights, even when totally unrelated to work. By extension, to
all of DistriNet, whether we teamed up as TAs or simply chatted from time to
time, thank you for the friendly atmosphere and for making everything easier!

And lastly, I would like to thank those furthest from my academic life, but
closest to me: my family and friends. As will hopefully become clear in the
following pages, even a tiny change in source code can have a huge impact on
the final outcome. Knowing each other for years and sometimes even decades, I
am confident that my source code would not have been the same without you,
even if our interactions may happen to be infrequent at times. In particular,
the unconditional support from my mom and dad is, and will always be, the
solid base that makes the achievable achievable; thank you both for everything.
To my sister Amelie and her partner in life Pierre, your contagious ambition
has infected me more than once and is an inspiration to go the extra couple of
miles. And finally, en büyük aşkım Dilara, while you may have introduced a
bug to my dissertation’s cover page, you are by far my favorite feature in life.

Gertjan Franken
February 2024, Leuven

This research is partially funded by the Research Fund KU Leuven and by the
Flemish Research Programme Cybersecurity.

Abstract

The World Wide Web has become an indispensable part of our daily lives,
with web browsers serving as our gateway to a vast array of information
and services. However, with each click of the mouse, we expose ourselves
to a myriad of attacks and privacy violations. Although we can rely on
various client-side countermeasures to protect us, defined by so-called browser
policies, any flaw in their implementation could render these safeguards futile.
Unfortunately, a comprehensive and flawless policy implementation is anything
but straightforward, due to the intricate nature of browser code bases.

In this dissertation, we address this struggle through the application of
automated dynamic analyses to various browser policy implementations. As
such, we conducted a comprehensive evaluation of enforced cookie and request
blocking policies, revealing numerous bypasses and vulnerabilities, illustrating
that even seemingly simple policies are susceptible to implementation flaws. To
gain deeper insights into the origins of these flaws, we pinpointed and analyzed
the lifecycles of 75 bugs associated with one of the most important browser
policies: the Content Security Policy. Drawing from the empirical data, we
uncovered various root causes, including the dispersion of policy enforcing code
and the mishandling of bug reports, where sensitive bugs were even publicly
disclosed before a fix was landed. We propose several solutions to the identified
issues, among which improved threat vector sharing between browser vendors.

Additionally, we show that these security and privacy issues extend beyond
the realm of web browsers alone and also affect native applications that embed
browser engines, such as EPUB reading systems. By analyzing 97 EPUB
applications, we uncovered many vulnerabilities, including the ability for loaded
EPUBs to leak files from the user’s device. Furthermore, we demonstrate that
malicious EPUBs can be distributed through official web stores with minimal
effort. Our responsible disclosure to the affected vendors and developers, our
contributions to the W3C compliance testbed, and the identification of several
specification shortcomings have bolstered the ecosystem’s security.

v

Beknopte samenvatting

Het wereldwijde web is een onmisbaar onderdeel van ons dagelijks leven
geworden, waarbij webbrowsers dienen als onze toegangspoort tot een breed
scala aan informatie en diensten. Met elke muisklik stellen we onszelf echter
bloot aan talloze aanvallen en inbreuken op onze privacy. Hoewel we kunnen
vertrouwen op verschillende beschermingsmaatregelen in de browser, gedefinieerd
door zogenaamde browser policies, kan elke fout in de implementatie hiervan
deze voorzieningen ondermijnen. Helaas is een alomvattende en foutloze
policy implementatie allesbehalve eenvoudig vanwege de complexe aard van
browserbroncode.

Deze thesis behandelt deze kwestie door de toepassing van geautomatiseerde
dynamische analyses op verschillende implementaties van browser policies.
Binnen deze context hebben we een uitgebreide evaluatie uitgevoerd op
policy implementaties voor cookies en request blokkering, waarbij we talloze
omzeilingen en kwetsbaarheden hebben onthuld, waarmee we aantonen dat
zelfs ogenschijnlijk eenvoudige policies vatbaar zijn voor deze problemen. Om
een dieper inzicht te krijgen in de oorzaken van deze uitdagingen, hebben
we de levenscycli van 75 bugs geïdentificeerd en geanalyseerd die verband
houden met een van de belangrijkste browser policies: de Content Security
Policy. Puttend uit de verzamelde empirische gegevens hebben we verschillende
oorzaken blootgelegd, waaronder de verspreiding van codesegmenten die de
policy afdwingen en de onjuiste afhandeling van bugrapporten, waarbij zelfs
gevoelige bugs openbaar werden gemaakt voordat ze waren opgelost. We
bespreken verschillende oplossingen voor deze problemen, waaronder verbeterde
uitwisseling van bedreigingsvectoren tussen browserleveranciers.

Bovendien tonen we aan dat deze beveiligings- en privacyproblemen zich
niet beperken tot webbrowsers alleen, maar ook van invloed zijn op native
applicaties die browser-engines insluiten, zoals EPUB-applicaties. Door 97
EPUB-applicaties te analyseren, hebben we talloze kwetsbaarheden blootgelegd,
waaronder de mogelijkheid van geladen EPUBs om bestanden te stelen van het

vii

viii BEKNOPTE SAMENVATTING

apparaat van de gebruiker. Daarnaast demonstreren we dat het verspreiden
van kwaadaardige EPUBs via officiële webwinkels zeer gemakkelijk is. Onze
bugrappaorten aan getroffen leveranciers en ontwikkelaars, onze bijdragen aan
het W3C-testbed, en de identificatie van verschillende tekortkomingen in de
specificatie, hebben de beveiliging van het ecosysteem versterkt.

List of Abbreviations

API Application Programming Interface. 4, 11, 20, 21, 28–30, 32, 37–40, 43–45,
86, 90, 92–95, 99, 100, 107, 109, 133, 134

ARPANET Advanced Research Projects Agency Network. 2

CERN European Organization for Nuclear Research. 2, 3

COCOMO Constructive Cost Model. 120

CSP Content Security Policy. 10, 13, 16, 29, 48–51, 53–55, 58, 61–75, 77,
102–104, 114, 122, 123, 138–140

CSRF Cross-Site Request Forgery. 6, 10, 11, 14, 22, 24, 25, 114

CSS Cascading Style Sheets. 9, 13, 36, 55, 81, 84, 92, 104, 108, 121

CVE Common Vulnerability and Exposures. 6, 49, 80, 103, 109

DNS Domain Name System. 9, 23, 41, 42, 77

EPUB Electronic Publication. 12, 18, 80–111, 115, 119, 125, 141–143, 145,
146

FTP File Transfer Protocol. 2

HSTS HTTP Strict Transport Security. 123

HTML HyperText Markup Language. 2, 13, 28, 34, 36–38, 41, 55, 70, 90, 93,
95, 108, 116, 121–123, 125

HTTP HyperText Transfer Protocol. 2, 21, 28, 29, 41, 53, 93, 94, 104, 114

HTTPS HyperText Transfer Protocol Secure. 53, 94

ix

x LIST OF ABBREVIATIONS

IEEE Institute of Electrical and Electronics Engineers. 20, 81

OCF Open Container Format. 84

OEBPS Open eBook Publication Structure. 86

OS operating system. 3, 17, 48, 99, 118, 125, 139

OWASP Open Worldwide Application Security Project. 5, 6, 24

PDF Portable Document Format. 30, 34–38, 42, 45, 110, 114, 134

PoC Proof of Concept. 48, 49, 55, 57, 67–69, 75, 117, 123, 138, 139

RFC Request For Comments. 7, 9, 11

SOP Same Origin Policy. 9, 13, 24, 44, 85, 86, 91, 92, 108, 122

SSL Secure Sockets Layer. 4

SVG Scalable Vector Graphics. 34, 36, 84, 105

SZZ Śliwerski, Zimmermann, and Zeller. 16, 118

TLS Transport Layer Security. 53, 69

URI Universal Resource Identifier. 67, 80, 94, 95, 97–101, 109

URL Universal Resource Locator. 2, 9, 25, 29, 34, 54, 80, 86, 87, 92, 97–99,
104, 105, 133

W3C World Wide Web Consortium. 3, 10, 28, 80, 81, 83, 90, 115, 125

WPT Web Platform Tests. 52, 65, 74, 118, 123

XHTML Extensible HyperText Markup Language. 81, 84, 90, 108

XSS Cross-Site Scripting. 5, 6, 10, 53, 82, 102, 104

XSSI Cross-Site Script Inclusion. 24, 35

Contents

1 Introduction 1
1.1 Towards the World Wide Web 2
1.2 More features, more problems 4

1.2.1 Expanding attack surface 4
1.2.2 Privacy impact . 7

1.3 Browser policies . 8
1.3.1 Same-Origin Policy . 9
1.3.2 Content Security Policy 10
1.3.3 Same-site cookies . 10
1.3.4 Tracking protection . 11

1.4 Browser engines for cross-platform development 12
1.5 Research questions and objectives 13

1.5.1 Cookie and request blocking policy implementation flaws 14
1.5.2 Root causes of security policy implementation bugs . . . 16
1.5.3 Implications of browser engines in native applications . 17

2 Who Left Open the Cookie Jar?: A Comprehensive Evaluation of
Third-Party Cookie Policies 19
2.1 Introduction . 21
2.2 Background . 23

2.2.1 Cross-site attacks . 23
2.2.2 Third-party tracking . 25

2.3 Framework . 26
2.3.1 Framework design . 26
2.3.2 Test-case generation . 28
2.3.3 Supported browser instances 31

2.4 Results . 33
2.4.1 Web browsers and built-in protection 33
2.4.2 Browser extensions . 36
2.4.3 Same-site cookie . 39

xi

xii CONTENTS

2.5 Real-world abuse . 39
2.5.1 Use of bypass methods 40
2.5.2 Evaluating unknown techniques 41

2.6 Discussion . 42
2.6.1 Browser implementations 42
2.6.2 Browser extensions . 43

2.7 Related work . 44
2.8 Conclusion . 45

3 A Bug’s Life: Analyzing the Lifecycle and Mitigation Process of
Content Security Policy Bugs 47
3.1 Introduction . 49
3.2 Background . 51

3.2.1 Web browser development 51
3.2.2 Content Security Policy 53

3.3 Methodology . 54
3.3.1 Bug collection and reproduction 54
3.3.2 Automated lifecycle identification 55
3.3.3 Analysis . 60

3.4 Results . 61
3.4.1 Bug lifecycle . 62
3.4.2 Bug introduction . 65
3.4.3 Bug reporting . 71
3.4.4 Bug fixing . 72

3.5 Discussion . 73
3.5.1 CSP implementation flaws 73
3.5.2 Improving bug handling 74
3.5.3 Future work . 75

3.6 Related work . 75
3.6.1 Dynamic browser policy evaluation 75
3.6.2 Vulnerability studies . 76
3.6.3 Content Security Policy 77

3.7 Conclusion . 77

4 Reading Between the Lines: An Extensive Evaluation of the Security
and Privacy Implications of EPUB Reading Systems 79
4.1 Introduction . 81
4.2 Background . 83

4.2.1 EPUB technical standard 83
4.2.2 EPUB reading systems 85
4.2.3 Same-Origin Policy . 85

4.3 Motivation . 86
4.3.1 Intransparency . 86

CONTENTS xiii

4.3.2 Malicious EPUBs . 87
4.3.3 Tracking EPUBs . 88

4.4 Methodology . 88
4.4.1 Experimental design . 89
4.4.2 Evaluated EPUB reading systems 96

4.5 Results . 97
4.5.1 Desktop . 97
4.5.2 Mobile . 99
4.5.3 Browser extensions . 101
4.5.4 Physical e-reader devices 102

4.6 Case studies . 102
4.6.1 Apple Books . 103
4.6.2 EPUBReader extension 103
4.6.3 Kindle . 104

4.7 Real-world analysis . 105
4.7.1 Malicious and tracking EPUBs in the wild 105
4.7.2 Malicious EPUB distribution through self-publishing . . 106

4.8 Discussion . 107
4.8.1 EPUB reading system implementations 107
4.8.2 EPUB specification . 108
4.8.3 Responsible disclosure 109

4.9 Related work . 109
4.9.1 Portable Document Format 110
4.9.2 Comprehensive policy evaluations 110

4.10 Conclusion . 111

5 Conclusion 113
5.1 Summary of contributions . 114
5.2 Future work . 115

5.2.1 Comprehensive implementation verification 116
5.2.2 Standardized language for bug reporting 117
5.2.3 BugHog . 117
5.2.4 Browser engines in non-browser applications 119

5.3 Thoughts on development and deployment 120
5.3.1 Code base . 120
5.3.2 Bug prevention . 122
5.3.3 Bug handling . 123
5.3.4 Deployment of browser engines in native applications . . 124

5.4 Concluding remarks . 125

A Third-party cookie evaluation 127
A.1 Test compositions . 127
A.2 Extension set population . 129

xiv CONTENTS

A.3 Bug reports and responses . 133
A.3.1 Built-in browser protection 133
A.3.2 Extensions . 134
A.3.3 Same-site cookie . 135

B Bug report search criteria and intention labeling 137
B.1 Bug report search criteria . 137

B.1.1 Chromium . 137
B.1.2 Firefox . 138

B.2 Bug report distribution . 138
B.3 Revision intention labels . 139

B.3.1 Labeling process . 139
B.3.2 Label interpretation . 140

C Additional reading system information 141

Bibliography 149

List of publications 175

List of figures

2.1 Example of a cross-site request. 24
2.2 Design of the framework that we used to detect bypasses of

imposed cross-site request policies. 27

3.1 Chromium’s development practice where all applied revisions are
periodically forked into a release branch. 52

3.2 Firefox’s development practice where all applied revisions are
periodically imported to a more stable repository. 52

3.3 Overview of all CSP use cases and bug classes with the respective
bug frequency in our dataset. 56

3.4 High-level overview of BugHog. The Docker logo indicates that
a component is run inside its own Docker container. 56

3.5 Example of the revision evaluation process. 59
3.6 CDFs of the duration between bug introduction and report, and

report and fix. 62
3.7 Number of bugs and associated fixing revisions for each year

since the introduction of CSP. 63
3.8 Number of non-foundational bug introductions for each year since

the introduction of CSP. 64
3.9 Gantt chart of cross-browser bug lifecycles that affected both

Chromium and Firefox. 66
3.10 Intentions of revisions that introduced a CSP bug. 67
3.11 Distribution of affected CSP directives and most prevalent

bypassing web mechanisms. 68
3.12 Intentions of revisions that fixed a CSP bug. 72

4.1 On the left a visual representation of the EPUB format, and on
the right the internal file structure of a compliant EPUB archive. 84

xv

xvi LIST OF FIGURES

4.2 Overview of our experimental design. The various EPUB files
that make up our testbed are manually loaded in the tested
reading system. If remote communication is available, the results
are automatically submitted to a web server, which will store it
in the database. Alternatively, these are manually copied from
the e-book. 89

4.3 Overview of the different EPUB experiments. In order to
assess certain features (red) of the reading system, we used
several experiments (rectangular), both with (yellow) and without
(white) JavaScript; these experiments are grouped by category
(blue). 91

List of tables

2.1 Results from the analysis of browsers and their built-in security
and privacy countermeasures. 34

2.2 Results from the analysis of ad blocking extensions per browser. 37
2.3 Results from the analysis of tracking protection extensions per

browser. 38
2.4 Unique number of tracking or advertising domains that make use

of one of the potential bypass techniques 41

3.1 Overview of bisection frameworks in terms of supported
functionality. 60

3.2 Overview of all revision intentions, where the Regression column
indicates whether the associated bug introducing revision would
be considered a regression. 61

4.1 Evaluation results for EPUB reading systems on Windows. . . 97
4.2 Evaluation results for EPUB reading systems on macOS. 98
4.3 Evaluation results for EPUB reading systems on Linux Ubuntu. 99
4.4 Evaluation results for EPUB reading systems on iOS. 100
4.5 Evaluation results for EPUB reading systems on Android. 101
4.6 Evaluation results for EPUB reading extensions for Chrome . . . 101

5.1 Estimated development costs of major open-source projects. . . . 121

A.1 Test compositions supported by our framework. 127
A.2 Population of the tracking protection extension sets. 130
A.3 Population of the ad blocking extension sets. 131

B.1 Number of bug reports. 139

C.1 Evaluated EPUB reading systems for Windows 142
C.2 Omitted EPUB reading systems for Windows 142

xvii

xviii LIST OF TABLES

C.3 Evaluated EPUB reading systems for macOS 142
C.4 Omitted EPUB reading systems for macOS 143
C.5 Evaluated EPUB reading systems for Linux Ubuntu 143
C.6 Omitted EPUB reading systems for Linux Ubuntu 143
C.7 Evaluated EPUB reading systems for iOS 144
C.8 Omitted EPUB reading systems for iOS 145
C.9 Evaluated EPUB reading systems for Android 145
C.10 Omitted EPUB reading systems for Android 146
C.11 Evaluated EPUB reading systems for Chrome and Firefox . . . 147

1
Introduction

This machine is a server.
DO NOT POWER IT DOWN!!

– Sir Tim Berners-Lee [CERb]
(Hand-written label on the very

first web server, 1990)

Unless you happen to be a member of my doctoral jury, a family member, a
friend or a fellow researcher who specifically requested a physical copy of this
dissertation, you are probably reading this document on a computer screen,
from a file that was retrieved through a web browser. Like billions of other
daily users, you implicitly placed trust in both the website from which you
downloaded this file and, more significantly, the browser’s protective measures
to safeguard your security and privacy. Indeed, you were most likely not the
victim of an attack attempting to compromise your banking account, and if you
are fortunate, your browser may even have prevented trackers from following
you across the Web. This might seem like a trivial observation, but it is one that
is often overlooked: the protective measures of browsers, defined by so-called
browser policies, are a critical component of the modern Web, and are the last
line of defense against a multitude of attacks and privacy infringements. Still,
the constantly evolving nature of the Web and the ever-increasing complexity
of web browsers render the correct implementation and maintenance of these
policies a daunting task. In this dissertation, we will explore the correctness
of browser policy implementations through dynamic evaluation frameworks,
striving to understand the root causes of their flaws and to find effective
mitigation strategies.

1

2 INTRODUCTION

In the remainder of this chapter, we set the stage for the core of this dissertation.
Our journey begins by exploring a concise history of web browsers within the
context of the World Wide Web in Section 1.1. In Section 1.2, we discuss some
of the most significant security and privacy challenges that have emerged over
time. Moving forward, we delve into the critical browser policies that have been
introduced to address these challenges in Section 1.3. We discuss how the core
of browsers, known as browser engines, transcended their traditional role within
the web browser ecosystem and additionally began serving as a foundation
for native desktop and mobile applications in Section 1.4. In Section 1.5, we
underline the significance of this dissertation by highlighting the gaps in existing
literature that our work has addressed.

1.1 Towards the World Wide Web

The origin of the Internet cannot be attributed to one single moment in history.
This intricate system has undergone continuous evolution over several decades,
and its exact origins lay within a multitude of different technologies and
innovations [Ber96; Kle10; Lei+97]. What is certain, however, is that web
browsers, serving as a portal to the World Wide Web, played a pivotal role in
the democratization of the Internet. Indeed, while the concept of interconnecting
computer networks emerged as early as the 1960s and was first consolidated
at scale in the early 1970s with the creation of computer networks such as
ARPANET and CYCLADES, accessing online resources was a far cry compared
to the simplicity we enjoy today [Kle10; Lei+97].

This change was only brought about in the early 1990s, when the challenges
associated with locating and accessing online resources were recognized within
the European Organization for Nuclear Research (CERN) [Rya10]. To address
these, an engineer by the name of Tim Berners-Lee proposed a uniform system
to enhance information accessibility among the various types of computers
within CERN. This system would enable user-friendly browsing of shared data
while coexisting seamlessly with already established protocols like the File
Transfer Protocol (FTP). In pursuit of this solution, the first web browser and
web server were developed,1 which would communicate with each other through
Universal Resource Locators (URLs), the HyperText Transfer Protocol (HTTP)
and the HyperText Markup Language (HTML), foundational elements that are
still in ubiquitous use today. This prototype system, made up of a combination
of software and protocols, was coined the World Wide Web in 1990 [Ber92;

1The first website was restored in 2013 and can be visited via https://info.cern.ch/h
ypertext/WWW/TheProject.html. [CERa]

https://info.cern.ch/hypertext/WWW/TheProject.html
https://info.cern.ch/hypertext/WWW/TheProject.html

TOWARDS THE WORLD WIDE WEB 3

Ber96].2 While the Internet community at the time was already encouraged to
use the World Wide Web and to develop browser clients, it was only in 1993
that every major operating system (OS) had a browser available [Rya10]. This
was also the year that CERN officially declared the World Wide Web system to
be public, meaning that it could be used by anyone for free. Around this time,
the usage of the World Wide Web grew exponentially [AH99; Ber96; Rya10].

Seeing this growth, the research institutions and companies developing web
browsers began competing for users. Incited by harsh competition in these
so-called browser wars, browser vendors started implementing new features that
were incompatible with already existing features [Och11]. At the epitome of this
turmoil, web developers were at times even forced to write two versions of the
same web page to cater to the users of each dominant browser [Phi98; W3C].3 To
address this, the World Wide Web Consortium (W3C) was eventually founded
in 1994, with the primary goal of designing common specifications for the
World Wide Web [Ber96]. To this day, the W3C is still the main international
standards organization for the World Wide Web and oversees various important
security and privacy policies employed by browsers.

In the following decades, various browsers perished in the face of fierce
competition that resulted in dwindling user bases, and out of their ashes
various new ones emerged. This can be taken quite literally, as none of the
major modern-day browsers have been developed entirely from scratch; they
have all been built upon pre-existing browser engines, as we will explore in
more detail in Section 1.4. What is more important is that, despite the coming
and going of browsers, the supported set of features and policies has steadily
expanded, and with it the complexity of browsers. While maintaining respect
for their historical significance, we can safely say that the early web browsers
were considerably simpler in comparison to their modern-day counterparts. We
can try to put this into perspective by looking at the number of code lines as
an estimation for complexity: the very first browser comprised nearly 10.000
lines [How21], whereas contemporary browsers like Chrome and Firefox consist
of tens of millions of lines [Syn23a; Syn23b]. Clearly, this constant addition
of features has shaped the Web into a powerful platform, capable of hosting a
wide range of applications. What could possibly go wrong?

2While the terms Internet and World Wide Web are often used interchangeably, they are
not the same. The Internet is a global system of interconnected networks, while the World
Wide Web is a global system of resources and services that are accessed over the Internet.

3Less resourceful development teams would often only support one browser, leaving users
of other browsers with a broken website.

4 INTRODUCTION

1.2 More features, more problems

Originally developed to render static, non-interactive web pages, browser
functionality was limited to navigating between these pages. However, as the
World Wide Web expanded over the coming decades, the ever-increasing demand
for more diverse use cases and websites with increased functionality led to the
introduction of countless new features such as GeoLocation sharing [Pop16],
caching APIs [Moz18b] and Service Workers [Moz17c]. Consequently, this
profound transformation has made web browsers highly complex pieces
of software, characterized by intricate code bases. Unfortunately, with
the expansion of a code base and the introduction of new features, code
maintenance and the task of overseeing larger attack surfaces become increasingly
challenging [Ale+20; Bra+22b; EC12]. Moreover, many of these introduced
features inherently impact user privacy.

1.2.1 Expanding attack surface

One of the earliest instances of a browser vulnerability dates back to 1996,
when two PhD students at the University of California discovered a flaw in the
implementation of Secure Sockets Layer (SSL) in the Netscape browser [GW96].
At the time, SSL was predominantly used for the encryption of online payment
communication, protecting sensitive information from eavesdroppers, such as
credit card details. By reverse engineering Netscape’s SSL implementation,
the students uncovered that the generated secret symmetric keys were not
sufficiently random, rendering them too predictable and thus susceptible to
exploitation. This is believed to be one of the first discoveries of a browser
vulnerability, foreshadowing many more to follow.4

The attacks discussed in the remainder of this section serve as examples that
highlight the expanding attack surface of web browsers over the course of their
history, due to the introduction of new features. Although numerous others
exist, our focus will be directed toward these specific attacks because of their
direct relevance to the remainder of this dissertation.

4Prior to this discovery, it was already widely known that the SSL implementation of
Netscape’s international version was vulnerable to brute-force attacks [GW96]. This stemmed
from stringent U.S. regulations that prohibited the export of strong cryptography technologies.
Netscape developers were constrained to employing 40-bit symmetric keys for the international
version, while the domestic version was allowed to use 128-bit symmetric keys [Dem00]. This
so-called encryption barrier was finally relaxed in 2000, as the enforcement of encryption
software export regulations was deemed infeasible [DL07].

MORE FEATURES, MORE PROBLEMS 5

Cross-Site Scripting

Coinciding with the year of the first browser vulnerability discovery, 1996, the
launch of JavaScript 1.0 marked a significant milestone in the space of website
functionality and would go on to have a profound impact on web browsers
in general [WE20]. With this feature, Web developers gained the ability to
embed scripting code into their web pages, which would be executed in the
user’s browser, allowing for the creation of interactive and dynamic web pages.
However, as many websites allowed the publication of user-generated content,
this newfound feature would also pave the way for a variety of new attack vectors.
For example, numerous websites encouraged user interaction by permitting
visitors to post comments on published articles or to send messages to other
users. If this user input is not adequately sanitized, ill-intending users can
exploit this functionality by injecting malicious JavaScript code into their posts.
When successful, the injected code would be executed by any user’s browser
visiting that page, within the context of that web page. The ramifications
of such attacks can be very severe, potentially allowing the adversary to leak
sensitive information or abuse session tokens (e.g. in the form of cookies) to
authenticate as the victim and carry out malicious actions. These attacks
are known as Cross-Site Scripting (XSS) attacks, a term coined by Microsoft
employees in 2000 [Mic09]. XSS remains a significant concern, as it is still part
of the OWASP Top Ten of web application security risks [OWA].

Social media websites, in particular, have become prime targets for XSS attacks,
due to the ability of users to post arbitrary content on the website’s domain.
In this context, XSS gained widespread attention in 2005 when the social
media website MySpace fell victim to a worm that leveraged XSS to propagate
itself [Gro+07]. This malicious software rapidly spread by circumventing input
sanitization and injecting itself into the profile pages of users who visited an
infected profile. The severity of the situation forced MySpace to shut down its
website in less than 24 hours to halt the spread, which had already affected over
one million user profiles. Later, other major social networks, such as Twitter and
Facebook, encountered their fair share of XSS vulnerabilities [Liu+19; RSP17].
Fortunately, in some instances, these vulnerabilities were responsibly disclosed
before any exploitation could take place, resulting in bounties for the reporters,
with some of them going as high as $25, 000 [Ban20; Liu+19]. These substantial
bounties underscore the potential impact of such vulnerabilities.

Cross-Site Request Forgery

The World Wide Web initially operated as a stateless system, where web servers
did not retain any information about the users’ past interactions with the website.

6 INTRODUCTION

Consequently, users were required to provide their credentials for every action
requiring authentication. To simplify this process, browsers began to support
implicit user authentication through methods such as cookies, introduced in 1994
by NetScape [GS02; Kri01]. This way, users could undertake multiple actions
on a website without having to re-authenticate themselves for every request.
However, this convenience came at a cost, as implicit authentication could be
exploited by malicious actors to perform actions on behalf of unsuspecting users.

For instance, consider a website that employs cookies for implicit user
authentication following their initial login. Subsequent requests made by the
browser to that website are automatically authenticated through these cookies,
granting access to actions such as changing passwords, sending messages or
deleting data, without requiring the user to re-authenticate. An adversary could
exploit this functionality by tricking the user into visiting a malicious website,
which triggers a request to the website on which the user is logged in. Since the
request is implicitly authenticated, any action it triggers will be attributed to the
user. These attacks were given the name Cross-Site Request Forgery (CSRF) in
2001 [Lin+09].5 Later, in 2006, this vulnerability was referred to as “the sleeping
giant of web-based vulnerabilities” because it had largely gone unnoticed for
several years and its true extent was thought to be underestimated [CM07;
Gro06; Lin+09; ZF08]. This is partly because, at the time, only 0.1% of CVEs
were attributed to CSRF, despite various security experts regularly discovering
CSRF vulnerabilities in analyzed websites.

The term “sleeping giant” proved fitting, as several high-profile web services
(e.g. ING, YouTube, Gmail, The New York Times) were shown to be vulnerable
to CSRF attacks in subsequent years [BJM08; ZF08]. ING, for example, was
the first financial institution found vulnerable to CSRF attacks, where attackers
could illicitly transfer money from the victim’s account. At the time, no CSRF
countermeasures were in place, and consequently, the attack merely comprised
triggering a series of GET and POST requests in the victim’s browser. CSRF
remained a significant threat in web application security and was included in the
OWASP Top Ten of web application security risks from 2007 to 2013 [WW07;
WW10; WW13]. However, the various effective countermeasures developed
over the years, both client-side and server-side, led to a substantial reduction
in the prevalence of CSRF-vulnerable websites. This ultimately resulted in
the exclusion of CSRF from the OWASP Top Ten starting with the 2017
edition [WW17], in contrast to XSS.

5A more intuitive name for CSRF is “session riding”, symbolizing how attackers
metaphorically ride on the victim’s session.

MORE FEATURES, MORE PROBLEMS 7

1.2.2 Privacy impact

In 1996, the privacy of users on the Web came under widespread scrutiny for
the first time, when an article in the Financial Times raised concerns about
the use of cookies for tracking users [Jac96]. Interestingly, as we have seen in
the preceding section, cookies were already introduced in 1994 by Netscape 2.0,
though their privacy implications were not widely understood at the time [GS02;
Kri01]. There was not even a formal specification for cookies; this was only
established in 1997 with RFC 2109, which used Netscape’s specification as a
foundation [Kri01].

Cookies were the first mechanism to allow websites to retain user-specific
information within the browser, thus simplifying development of stateful web
applications significantly. This innovation enabled websites to easily store
details like the user’s language preference, items in their online shopping cart
or whether they had previously visited the site. In most cases, however, cookies
were and still are employed to store unique identifiers that link to data residing
on the web server. Unfortunately, this process lacks transparency, as users
remain largely uninformed about the data that is linked to them. In essence,
while cookies provide significant usability enhancements, they also facilitate
user profiling by websites, thereby posing a substantial privacy risk.

An even more alarming development was the advent of third-party cookies,
which are set by and sent to websites other than the one the user is visiting.
To illustrate, when a user visits a news website with embedded advertisements,
the browser sends a request to the advertisement company’s domain to fetch
the advertisement. When responding by sending the requested advertisement,
the advertisement company can include a unique cookie which will be stored by
the browser. Consequently, when the user visits another website that includes
advertisements from the same company, the browser will again send a request
to the advertisement company’s domain, including the unique cookie. This
mechanism enables the advertising company to track the user across multiple
websites, thereby facilitating the construction of a personal browsing profile.

Remarkably, because of privacy concerns, the first formal specification, RFC
2109, forbade the use of third-party cookies unless users explicitly opt-in [KM97].
However, this rule was disregarded by the major browsers at the time, namely
Netscape and the emerging Internet Explorer. One primary reason for their
non-compliance was the potential backlash from advertisers, who coincidentally
were among the clients purchasing servers from these vendors [Kri01]. The
prohibition of third-party cookies remained intact in the reiteration of the
specification in 2000, RFC 2965, yet suffered a similar fate as its predecessor
and was not followed [Kri01]. In contrast, the most recent specification, RFC

8 INTRODUCTION

6265 from 2011, permits that third-party cookies are enabled by default [Bar11a].
However, it explicitly categorizes them as “worrisome” due to their privacy
implications and encourages browser vendors to implement countermeasures to
address this concern. Indeed, a vast body of research has already demonstrated
the implications of third-party cookies on privacy and their extensive use by
advertising-related companies to gather user information [Dam+22; Dim+22;
MM12; RKW12].

Nowadays, privacy-oriented web browsers are actively curbing the privacy
implications of third-party cookies. Notably, Firefox has implemented
partitioning of third-party cookies by default, rendering them useless for tracking
users across various domains [Moz23; Webb]. Lagging but pressured by the
growing body of privacy regulations and increased privacy awareness among
users, Chrome had previously committed to phasing out third-party cookies
entirely by 2022. Nevertheless, this transition has faced industry resistance
and has been postponed as a result [Cha22]. As of now, the initiation of the
third-party cookie phase-out is set to commence in the first quarter of 2024,
with the objective of completing the transition before the year’s end [Mer23].
Chrome plans to replace third-party cookies with their more privacy-friendly
Privacy Sandbox standard [GKK21]. Nonetheless, it is uncertain whether other
browsers will adopt this standard, as they have voiced criticism and concerns
about various aspects of the standard [Kes22; Res21].

While cookies are often criticized for their privacy implications, it is important
to note that they are not the sole mechanism used for tracking users across
the Web. Other mechanisms, such as LocalStorage, and practices like
browser fingerprinting, have also been extensively studied in the context of
tracking [Aca+14; Dim+21; Eck10; Lap+20; LRB16; MM12; Mozh; Vas+18].

1.3 Browser policies

A wide array of countermeasures has been developed to protect users from the
attacks and privacy concerns outlined in the previous section, encompassing
both client-side and server-side solutions. However, given this dissertation’s
emphasis on client-side enforcement, our discussion will be confined to this
aspect.

All countermeasures discussed in this section consist of two fundamental
elements: a policy that defines the rules of the countermeasure and an
implementation responsible for enforcing these rules. Some of these policies are
implicit, signifying that they are automatically enforced without necessitating
any website configuration. Conversely, explicit policies require the website to

BROWSER POLICIES 9

expressly specify its intent to enforce the policy, typically conveyed through a
response header. We collectively refer to all policies enforced by browsers as
browser policies. As we progress through this section, we will observe that prior
research has already demonstrated that the translation of a policy into a correct
and comprehensive implementation is often not a straightforward process and
is prone to errors.

1.3.1 Same-Origin Policy

The Same Origin Policy (SOP) is one of the oldest and most important security
policies on the Web [JLS13; SNM17]. This policy is implicit and, as such, it
is active by default, requiring no configuration by a website. Introduced in
1995 by the Netscape browser, this policy only allows scripts to interact with
resources that reside on the same origin as the script itself [SB11]. Here, origin
stands for the combination of the protocol, domain and port of a resource. For
instance, due to SOP, when a user visits https://attack.er, this website will
be unable to access any information from another website, such as the user’s
invoices on https://bank.com. SOP also prevents scripts from reading files
residing on the user’s file system, which would otherwise be possible by using a
file:// URL.

Unfortunately, the SOP is not formally defined, which has led to various
interpretations of the policy among browser vendors [Sin+10; SNM17].6
Additionally, many researchers have already found various ways to subvert the
SOP: through Cascading Style Sheets (CSS) [Hei+12], DNS rebinding [JLS13],
dynamic JavaScript employed by websites [Lek+15] and timing attacks [BB07;
VJN15].

Ideally, we would report on a comprehensive overview of SOP implementation
bugs as a way to convey the extent of the problem, but to the best of our
knowledge, no such overview has been published to date. This is related to
the fact that compiling this information presents various challenges due to
the inconsistent labeling practices on bug reporting platforms. For instance,
simply querying for bug reports labeled with SOP would not be representative.
Unfortunately, this issue is not confined to SOP and extends to the browser
policies discussed in the following sections as well. We will delve deeper into
this matter in Section 3.4.3.

6RFC 6454 formally defines the Web Origin Concept, which is used as a basis for
SOP [Bar11b].

10 INTRODUCTION

1.3.2 Content Security Policy

The Content Security Policy (CSP) was first presented in 2010 by Mozilla as
an in-depth defense against content injection attacks such as XSS, and was
later formalized into a W3C specification [SB12; SSM10]. In the subsequent
years all major browsers had implemented support for CSP [Mozf]. By defining
a CSP through the Content-Security-Policy header, developers can have
fine-grained control over the resources that the browser is allowed to load in
the context of their web pages. For example, if an adversary has managed to
bypass the employed content sanitization measures, CSP can act as the last
line of defense by preventing the browser from executing the injected script.
Throughout the years, CSP has been extended with additional functionality in
subsequent versions 2 and 3, such as new directives and keywords, and even
new use cases [WBV16; WS23]. Since then, it can also be used to upgrade
insecure requests to secure requests, to enforce framing policies and to control
the Referer header [Mozf].

Throughout its development history, researchers have identified several issues
with CSP, highlighting its complexity and the difficulties of implementing it
correctly [HMN15; SBR17; VHS16]. Additionally, as part of our work discussed
in Chapter 3, we collected 75 publicly released bugs for the CSP implementation
in Chrome and Firefox, demonstrating the prevalence of these issues.

1.3.3 Same-site cookies

The same-site cookie policy is the most recent addition to the set of browser
policies discussed in this thesis, as it has only been introduced around 2016 in
most major browsers and is now widely supported [KMG18; Sta17]. It is intended
to be used in conjunction with server-side best practices and countermeasures
against CSRF (e.g. CSRF tokens), as a defense in depth [WG16]. The policy is
explicitly configured by the website through the SameSite attribute of cookies,
which can be assigned the values strict, lax or none. When assigned strict,
the cookie should never be included in any cross-site request. The same
holds true for cookies assigned with lax, with exceptions for top-level GET
requests and requests initiated by <link rel=‘prerender’> elements. The
policy is disabled by assigning the value none. For example, in a hypothetical
scenario https://bank.com is vulnerable to a CSRF attack, because one of its
endpoints accepts POST requests carrying an authentication cookie to initiate
money transfers. By setting the SameSite attribute of the authentication
cookie to lax, the browser will not include this cookie in POST requests that are
initiated from a third-party domain, and thus any CSRF attack from a third-
party domain like https://attack.er will be thwarted. Still, authenticated

BROWSER POLICIES 11

requests initiated from https://bank.com to this endpoint will be successful,
as intended, as the cookie will be included here.

In 2020, Chrome and Firefox started rolling out a policy to automatically
treat cookies without a SameSite attribute as SameSite=lax by default [Con20;
Sta19]. This update is set to be incorporated in the upcoming specification of
the cookie standard, currently known as RFC 6265bis [BWW23]. The rationale
behind this decision is that previously, developers needed to opt-in for CSRF
protection, while with the updated policy they would be protected by default.
However, Firefox later reverted their rollout due to numerous websites breaking
as a result of this change [Bug22].

1.3.4 Tracking protection

Due to growing privacy concerns related to online tracking, various client-side
countermeasures have been introduced over the years, primarily in the form
of browser settings and extensions. Among the earliest of these measures
were options to block all cookies or specifically third-party cookies. However,
as previously mentioned, tracking methods go beyond the scope of cookies;
techniques like fingerprinting can also be employed to monitor users across the
Web without relying on cookies. [Aca+14; Dim+21; Eck10; Lap+20; LRB16;
Vas+18]. In such cases, completely blocking requests to third-party domains is
a more effective countermeasure.

To address the growing demand for enhanced privacy, several browser extensions
were developed to block requests to known tracking domains. These extensions
typically operate by maintaining a list of recognized tracking domains, known as
blocklists. When a request is made to one of these domains, it is blocked. Given
the popularity of these extensions and the increasing concern for user privacy,
browser vendors began incorporating tracking protection mechanisms into their
browsers. Firefox was one of the major browsers that took the lead in this regard,
introducing tracking protection in version 35, released in 2015 [KC15]. Firefox’s
approach mirrored that of most extensions, relying on blocklists. Subsequently,
in 2017, Safari 11 introduced Intelligent Tracking Prevention, which adopted a
machine learning-based approach instead of traditional blocklists. It leveraged
various website features to detect and block tracking [Weba; Wil17].

Many instances have surfaced where websites effectively exploit workarounds to
evade ad blocking and tracking protection measures. For instance, advertising-
related companies were observed abusing the WebSocket API as a method to
circumvent these protective measures [Bas+18; Bug16].

12 INTRODUCTION

1.4 Browser engines for cross-platform
development

Browser engines are the software components responsible for rendering web
pages, and thus for the user-facing functionality of web browsers. Over the
course of several years marked by intensive development efforts, these engines
have evolved into cross-platform and feature-rich backbones of modern web
browsers. Nowadays, the most popular engines among browsers are Blink7 (used
by Chrome, Edge, Opera and Brave), Gecko8 (used by Firefox and TorBrowser)
and WebKit9 (used by Safari). By observing this, it already becomes apparent
that even among browsers, browser engines are extensively shared and reused,
in avoidance of reinventing the wheel.

However, the importance of browser engines even extends beyond the realm of
web browsing. Their open-source nature has paved the way for a multitude of
other software projects to incorporate and repurpose them, thereby contributing
to their widespread adoption. For example, the Electron framework repurposed
Blink and the V8 JavaScript engine to provide developers with a cross-platform
framework for developing desktop applications. Various high-profile applications
have been developed using Electron, including Slack, Discord, Microsoft Teams
and Visual Studio Code.10 Also, mobile platforms like iOS and Android provide
developers with the option to use browser engines in their applications.

Nevertheless, the reuse of browser engines presents certain subtle challenges that
may not be immediately apparent. Web browsers, by default, prohibit implicit
access to the local file system due to inherent security concerns. However,
native applications incorporating browser engines may not uphold this strict
security posture, potentially exposing vulnerabilities. The same holds for other
capabilities, such as access to the microphone, camera or location. In these
cases, any content loaded by the browser engine could attempt to exploit this
lack of constraint. Especially messaging applications, on which users can send
arbitrary content to other users, are vulnerable to this. Here, an attacker
could attempt to inject malicious scripts into a message. Even more concerning
are applications that display arbitrary content without the need to bypass
sanitization mechanisms, such as Electronic Publication (EPUB) readers. These

7Google forked Blink from WebKit in 2013 because of simplification and performance
reasons [Bar13; Chrf].

8Gecko was originally released as a complete rewrite of Netscape’s browser engine, named
Raptor in 1998 and was later rebranded to its current name. The company behind Netscape
founded Mozilla in the same year [IV10].

9Apple forked WebKit from KHTML as part of the first release of Safari in 2003 [App03;
Webb].

10A more extensive list of applications can be found on https://www.electronjs.org/apps.

https://www.electronjs.org/apps

RESEARCH QUESTIONS AND OBJECTIVES 13

applications render e-books authored by anyone, embedding HTML, CSS, and
potentially JavaScript that are to be interpreted by the engine.

1.5 Research questions and objectives

As we progressed through the preceding sections of this chapter, we have
delved into the broader context of the intricate nature of browsers and the
challenges that accompany their development. Much like the construction of
Rome, web browsers were not created in a day; they evolved piece by piece into
the sophisticated software we rely on today. However, the developers of the
earliest browsers could hardly have foreseen the extensive functionalities these
applications would come to support, let alone that their code would be adopted
by countless native applications. Consequently, the foundational work laid by
these pioneers did not account for the features, security measures and privacy
concerns that future developers would face. Nonetheless, this groundwork
remains in use to this day and continues to be built upon.

Simultaneously, the abundance of security and privacy policies supported by web
browsers must correctly coexist with the even greater abundance of supported
features. With each new policy introduced, every existing feature must undergo
scrutiny to ensure compliance. Vice-versa, every newly introduced feature must
be checked against all enforced policies to prevent potential abuse as a bypass.
This, for instance, combined with the previously discussed lack of foresight,
often leads to the dispersion of policy enforcement mechanisms throughout the
code base, typically in the form of conditional statements. This increases both
the cost of code maintenance and the likelihood of oversights. To gauge the
extent of these issues, we distill three research questions in the remainder of
this section.

Prior research has scrutinized a variety of policies, but the majority of these
are seemingly complex and intricate policies, such as CSP and SOP. Here, the
policy’s complexity may be a contributing factor to the issues that have been
identified. More straightforward policies, such as those governing cookies and
requests, had not been comprehensively studied yet. Bridging this gap could
provide valuable insights into the underlying causes of these problems:

Question 1: To what extent do implementation flaws, similar to those
found for seemingly more intricate browser policies, affect cookie and
request blocking policies?

14 INTRODUCTION

To establish robust solutions, a thorough comprehension of the fundamental
reasons behind these issues is essential. This necessitates an examination of
various facets of these bugs, including their lifecycle, the affected code and the
associated handling. A comprehensive analysis of a large dataset of bugs can
help us better grasp the root causes of these issues:

Question 2: What are the root causes of known browser policy bugs and
how can we mitigate them effectively?

As previously discussed, browser engines are not only extensively reused by
web browsers, but also repurposed by native applications. Some of these
applications have already been reported to be vulnerable to the same types of
attacks mounted against browsers. Nevertheless, it remains uncertain to what
extent these vulnerabilities affect native applications:

Question 3: How do security and privacy concerns that impact browsers
extend to other applications that incorporate browser engines?

In the upcoming sections, we elaborate on each of the posed research questions
and couple them with our approach of addressing them.

1.5.1 Cookie and request blocking policy implementation flaws

Cookies have evolved into a fundamental pillar of the World Wide Web, becoming
a ubiquitous element within modern web applications. For instance, the
significance of cookies is underscored by the challenges and resistance that are
delaying the transition to a Web without third-party cookies [Cha22]. Indeed,
web services that rely on cookies will have to be re-engineered to function
without them, particularly services that use them for authentication or tracking.
As we have explored in the previous sections, cookies are subject to a spectrum of
policies that impact their functionality. On one hand, browsers have introduced
the same-site cookie policy as a countermeasure against CSRF attacks. On the
other hand, many browsers now offer various settings to block (third-party)
cookies and requests, as do dozens of browser extensions, in response to the
privacy concerns associated with widespread tracking.

While prior research has already uncovered flaws in various browser policy
implementations, cookie and request policies have not been studied in a
comprehensive manner [Agg+10; HMN15; Sin+10; SNM17; Zhe+15]. To achieve

RESEARCH QUESTIONS AND OBJECTIVES 15

this, it is essential to conduct a comprehensive set of experiments by addressing
two critical dimensions:

• Policy coverage: The experiments should encompass the full spectrum
of potential policy configurations.

• Feature coverage: The experiments should encompass all the features
currently supported by the browser, and all their possible configurations.

In the context of policy coverage, the same-site cookie policy covers two
settings: lax and strict. Regarding tracking protection, these policies fall
into the “set and forget” category, meaning that once you enable them, they
autonomously carry out their designated tasks. The setting to block (third-
party) cookies is similar, as it is either enabled or disabled.

The more challenging part here, however, lies with achieving comprehensive
feature coverage. In this context, coverage should encompass all features
that can trigger the browser to send a request. This is particularly crucial in
relation to tracking: even if only one feature is not covered by the policy’s
implementation, it can be exploited by trackers as a bypass to undermine
the protection in full. Furthermore, features can be used in various embedded
browsing contexts, such as within <iframe> elements, which could also influence
the browser’s enforcement behavior. In this light, multiple studies have already
demonstrated that trackers can be very creative in finding ways to circumvent
tracking protection mechanisms [Dam+22; Dim+21; MM12; RKW12].

Covering both dimensions leads to an extensive set of required experiments
to be conducted. Therefore, to make this project feasible, a certain level of
automation is required, while being compatible with a wide range of browsers
and browser extensions at the same time. As such, our first research goal is
stated as follows:

Objective 1: To conduct an automated and comprehensive evaluation of
cookie and request blocking policy implementations.

This evaluation, made possible by the development of an automated framework
designed to assess various browsers and browser extensions, is detailed in
Chapter 2. Here, we uncovered various bypasses in the implementations of
the same-site cookie policy, third-party cookie policy and tracking protection
mechanisms in virtually every browser.

16 INTRODUCTION

1.5.2 Root causes of security policy implementation bugs

Despite the abundance of research on web browser security and privacy
policies, a fundamental understanding of the underlying causes behind policy
implementation issues remains elusive. While previous studies have pointed to
the introduction of new features and decentralized enforcement as potential
factors contributing to policy implementation bypasses [Agg+10; JB08], no
systematic investigation has been conducted to comprehensively identify these
root causes. Similarly, various solutions to address implementation flaws have
been proposed, but these often focus on the limited set of identified flaws which
may not represent the true distribution of underlying causes.

In the field of software engineering, extensive research has examined software
system bugs, seeking to discover vulnerabilities and provide remedies, with
some studies focusing on browsers [Ale+22; BBB16; Bra+22b; CMN15; FAW13].
However, these studies heavily rely on the completeness and correctness of
bug reporting practices and primarily offer conclusions about the bug handling
process. We argue that to gain a well-founded understanding of root causes, it is
necessary to verify the information in bug reports, including the introducing code
changes (which is often not known) and the fixing code changes (which could
be incorrect). This requires the ability to trace the lifecycles of vulnerabilities
close to 100% accuracy, otherwise the study’s conclusions could be flawed.
Consequently, methods that rely on static code analysis, like the SZZ algorithm,
are unsuitable for this purpose [Bao+22; Ian+23; KPW06; Shi+23]. Furthermore,
many of these studies are limited to detecting changes between software release
versions, whereas our goal is to identify the exact code change that introduced
the bug, necessitating consideration of every single code revision.

In comparison to the previous research objective, this goal involves an even
larger number of experiments, as it requires evaluation at the level of software
revisions. Hence, automation is especially crucial here. In summary, our second
research goal is as follows:

Objective 2: To identify the root causes of policy implementation flaws
through an automated empirical analysis of bug lifecycles.

We accomplished this objective by pinpointing almost all publicly released CSP
bugs in Chromium and Firefox, and tracing their lifecycles to identify various
root causes. Our results, coupled with the framework developed for this purpose,
are presented in Chapter 3.

RESEARCH QUESTIONS AND OBJECTIVES 17

1.5.3 Implications of browser engines in native applications

Unlike our previous research goals, which focused on issues that manifest in web
browsers, we now adopt a broader perspective. While it is known that browser
engines are susceptible to security and privacy flaws, prior research had not
explored whether these vulnerabilities also appear in non-browser applications
that incorporate a browser engine. It is worth noting, however, that numerous
reports have documented vulnerabilities in frameworks designed for embedding
browser engines, such as Electron [Sny]. Although it is certainly undesirable
for vulnerabilities to exist in the foundational component of an application,
this does not necessarily entail a practical exploit. Furthermore, there may
be alternative ways in which these applications can inadvertently introduce
vulnerabilities, beyond inheriting weaknesses from the embedded engine.

Web browsers, due to their extensive user base, are attractive targets for
attackers. Consequently, browsers are meticulously sandboxed from the user’s
OS to limit the potential impact of vulnerabilities. For example, websites are
generally unable to access files from the user’s file system without explicit
user consent. However, native applications, particularly on desktop platforms,
may have more flexibility in this regard and often possess broader capabilities,
including access to the file system. Even with the increasing prevalence of built-
in OS permissions, where users are explicitly prompted to grant permission
during installation or when an application attempts to use a specific capability
for the first time, these measures may not offer absolute protection against
potential risks. For instance, if an application requires file access permissions
for legitimate use, an attacker who manages to execute arbitrary code within
the application will also be able to abuse this capability and access the file
system as a result.

To attain a comprehensive understanding of the security and privacy implications
tied to the integration of browser engines in desktop applications, a methodical
study is imperative. Nonetheless, conducting such an investigation introduces
unique challenges compared to scrutinizing browser implementations. A
particularly significant hurdle arises from the fact that most desktop applications
are closed-source, making direct source code inspection impossible and
necessitating a dynamic approach. Even then, the dynamic evaluation of
desktop applications proves more complex compared to that of web browsers in
the context of our first research objective. While several libraries like Selenium
and Puppeteer exist for automating web browsers, equivalent tools for desktop
applications are notably absent. Furthermore, browsers tend to exhibit more
uniform behavior, often allowing interaction through command-line interfaces.
In contrast, desktop applications vary significantly in their usage patterns and

18 INTRODUCTION

functionalities, requiring a more adaptable and dynamic assessment approach.
With this in mind, we formulated the following research objective:

Objective 3: To investigate the security and privacy implications of native
applications that incorporate browser engines.

For this purpose, we undertook a thorough assessment of EPUB reading systems,
a category of native applications that incorporate browser engines, as outlined
in Chapter 4. Through the evaluation of 97 applications across seven platforms
using a semi-automated testbed, we identified numerous security and privacy
issues.

2
Who Left Open the Cookie Jar?

A Comprehensive Evaluation
of Third-Party Cookie
Policies

It’s like a cookie, they all crumble.

– Dr. Dre [DS92]
(Nuthin’ but a “G” Thang, 1992)

This chapter was previously published as:

G. Franken, T. Van Goethem, and W. Joosen. “Who Left Open the Cookie
Jar? A Comprehensive Evaluation of Third-Party Cookie Policies”. In:
27th USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 151–168. isbn: 978-1-939133-04-5

In this chapter, we introduce a fully automated framework tailored for the
exhaustive assessment of cookie and tracking protection policy implementations,
the first of its kind. Leveraging this framework, we evaluated the effectiveness of
seven web browsers’ built-in mechanisms and 46 browser extensions advertised
either as ad blocker or anti-tracking tool. Moreover, this framework was
published as open-source and was used as a foundation for the framework
presented in Chapter 3. Beyond its automation capabilities, the core value of
this framework lies in its comprehensiveness: the carefully compiled test suite

19

20 WHO LEFT OPEN THE COOKIE JAR?

covered all known mechanisms that can trigger requests, even incorporating
various nested browsing contexts.

The results of our evaluation were brutal: virtually every evaluated tracking
protection mechanism was shown to be susceptible to circumvention. Partly due
to the non-comprehensive WebRequest API leveraged by browser extensions,
not a single ad blocking or anti-tracking extension was able to block all
mechanisms from triggering third-party requests. As such, users employing
these countermeasures were given a false sense of privacy for years on end.
Furthermore, several same-site cookie policy bypasses were discovered across
various browsers. Even built-in settings to block (third-party) cookies, which
had been around for years already, were circumventable in multiple browsers.
All identified bypasses were reported to the respective browser vendors and
extension developers.

In a follow-up project, published in IEEE’s Security & Privacy Magazine [FVJ19],
we re-evaluated the built-in mechanisms across the latest versions of web
browsers, one year after the original evaluation. Regrettably, developers did not
manage to rectify all of the reported issues. While the anti-tracking settings
did exhibit some enhancements by blocking a greater array of mechanisms,
their completeness remained unsatisfactory. Notably, the same-site cookie
vulnerabilities were resolved in Chrome and Opera, while Edge and the newly
introduced privacy-oriented browser Brave, remained affected.

Our work stands as a compelling argument that the complexities of a correct and
comprehensive implementation of browser policies are far from trivial. Despite
the ostensible simplicity of most anti-tracking policies, which primarily revolves
around blocking requests to any endpoint matching with one of the regular
expressions in a blocklist, a significant challenge persists. Within the context
of Firefox’s Tracking Protection, we confirmed that this challenge is partly
rooted in the retroactive introduction of this policy; compliance of pre-existing
mechanisms is not centrally enforced, but rather distributed across multiple
segments within the code base. This observation corroborates the findings of
Aggarwal et al. regarding Firefox’s Private Browsing mode [Agg+10]. The
potential root causes of policy implementation flaws are further discussed in
Chapter 3.

This work was awarded with a Distinguished Paper Award and the 2018 Internet
Defense Prize which came with a grant of $100, 000. As part of our outreach
efforts, we created a dedicated website where we provide a summary of our
findings.1

1https://wholeftopenthecookiejar.com/

https://wholeftopenthecookiejar.com/

INTRODUCTION 21

2.1 Introduction

Since its emergence, the Web has been continuously improving to meet the
evolving needs of its ever-growing number of users. One of the first and most
crucial improvements was the introduction of HTTP cookies [Bar11a], which
allow web developers to temporarily store information such as website preferences
or authentication tokens in the user’s browser. After being set, the cookies are
attached to every subsequent request to the originating domain, allowing users
to remain logged in to a website without having to re-enter their credentials.

Despite their significant merits, the way cookies are implemented in most modern
browsers also introduces a variety of attacks and other unwanted behavior. More
precisely, because cookies are attached to every request, including third-party
requests, it becomes more difficult for websites to validate the authenticity
of a request. Consequently, an attacker can trigger requests with a malicious
payload from the browser of an unknowing victim. Through so-called cross-site
attacks, adversaries can abuse the implicit authentication to perform malicious
actions through cross-site request forgery attacks [BJM08; ZF08], or extract
personal and sensitive information through cross-site script inclusion [Lek+15]
and cross-site timing attacks [BB07; GH15; VJN15].

Next to cross-site attacks, the inclusion of cookies in third-party requests also
allows for users to be tracked across the various websites they visit. Researchers
have found that through the inclusion of code snippets that trigger requests
to third-party trackers, the browsing habits of users are collected on a massive
scale [Aca+14; RKW12; Yu+16]. These trackers leverage this aggregated
information for the purpose of content personalization, e.g. on social networks,
displaying targeted advertisements, or simply as an asset that is monetized by
selling access to the accumulated data.

As a direct response to the privacy threat imposed by third-party trackers and
associated intrusive advertisements, a wide variety of efforts have been made.
Most prominently is the emergence of dozens of browser extensions that aim to
thwart their users from being tracked online. These extensions make use of a
designated browser API [Pie17] to intercept requests and either block them or
strip sensitive information such as headers and cookies. Correspondingly, several
browsers have recently introduced built-in features that aim to mitigate user
tracking. For instance, Firefox in its private browsing mode will by default block
third-party requests that are made to online trackers [Moz15]. It is important
to note that the effectiveness of these anti-tracking mechanisms fully relies on
the ability to intercept or block every type of request, as a single exception
would allow trackers to simply bypass the policies. In this chapter, we show
that in the current state, built-in anti-tracking protection mechanisms as well

22 WHO LEFT OPEN THE COOKIE JAR?

as virtually every popular browser extension that relies on blocking third-party
requests to either prevent user tracking or disable intrusive advertisements, can
be bypassed by at least one technique.

Next to tracking protections, we also evaluate a recently introduced and
promising feature aimed at defending against cross-site attacks, namely same-
site cookies [WG16]. While cross-site attacks share the same cause as online
tracking, i.e. the inclusion of cookies on third-party requests, their defenses
are orthogonal. The SameSite attribute on cookies can be set by a website
developer, and indicates that this cookie should only be included with first-party
requests. Consequently, when this policy is applied correctly, same-site cookies
defend against the whole class of cross-site attacks. Similar to the tracking
defenses, the security guarantees provided by same-site cookies stand or fall
by the ability to apply its policies on every type of request. As part of our
evaluation, we discovered several instances in which the same-site cookie policy
was not correctly applied, thus allowing an adversary to send authenticated
requests regardless of the lax or strict mode applied to the same-site cookie.
Although this bypass could only be used to trigger GET requests, thereby
making the exploitation of CSRF vulnerabilities in websites that follow common
best-practices more difficult, it does underline the importance of a systematic
evaluation to test whether browser implementations consistently follow the
policies proposed in the specification.

In this chapter, we present the first extensive evaluation of policies applied
to third-party cookies, whether for the purpose of thwarting cross-site attacks
or preventing third-party tracking. This evaluation is driven by a framework
that generates a wide-range of test cases encompassing all methods that can
be used to trigger a third-party request in various constructs. Our framework
can be used to launch a wide variety of different browsers, with or without
extensions, and analyze, through an intercepting proxy, whether the observed
behavior matches the one expected by the browser instance. We applied this
framework to perform an analysis of 7 browsers and 46 browser extensions, and
found that for virtually every browser and extension the imposed policy can
be bypassed. The sources for these bypasses can be traced back to a variety
of implementation, configuration and design flaws. Further, our crawl on the
Alexa top 10,000 did not identify any use of the discovered bypasses in the wild,
indicating that these are novel.

Our main contributions are the following:

• We developed a framework with the intent to automatically detect bypasses
of third-party request and cookie policies. This framework is applicable

BACKGROUND 23

to all modern browsers, even in combination with a browser extension or
certain browser settings.

• By applying the framework to 7 browsers, 31 ad blocking and 15 anti-
tracking extensions, we found various ways in which countermeasures
against cookie leaking can be bypassed.

• We performed a crawl on the Alexa top 10,000, visiting 160,059 web pages,
to inspect if any of these bypasses were already being used on the Web.
In order to estimate the completeness of our framework, we analyzed the
DNS records spawned by each web page.

• Finally, we propose solutions to rectify the implementations of existing
policies based on the detected bypasses.

2.2 Background

A fundamental trait of the modern web is that websites can include content
from other domains by simply referring to it. The browser will fetch the
referenced third-party content by sending a separate request, as shown in
Figure 2.1. The web page of first-party.com contains a reference to an
image that is hosted on third-party.com. In this scenario, the user first
instructs his browser to visit this web page, e.g. by entering the address in the
address bar or by clicking on a link. This will initiate a request to the web
page http://first-party.com/, and a subsequent response will be received
by the browser (1). While parsing the web page, the user’s browser comes
across the reference to https://third-party.com and fetches the associated
resource by sending a separate request (2). The browser will include a Cookie
header [Bar11a] to the request if these were previously set for that domain
(using the Set-Cookie header in a response). This applies to both the request
to first-party.com as well as third-party.com. In this scenario, we would
name the cookies attached to the latter request third-party cookies, as this is a
request to a different domain than the including document.

2.2.1 Cross-site attacks

Because browsers will, by default, attach cookies to any request, including third-
party requests, an adversary is able create a web page that constructs malicious
payloads which will be sent using the victim’s authentication. Through these
so-called cross-site attacks, attackers can trigger state changes on vulnerable
websites or extract sensitive information.

24 WHO LEFT OPEN THE COOKIE JAR?

Figure 2.1: Example of a cross-site request.

One of the most well-known cross-site attacks is CSRF. CSRF attacks aim to
perform undesirable actions, e.g. transfer funds to the account of the adversary,
on behalf of the victim who is authenticated at the vulnerable website. Typically,
this will be done by triggering a POST request to the targeted website, as it is
considered best-practice to prevent GET requests from having any state-changing
effect [Fie+99]. Although websites of large organizations such as The New York
Times, ING, MetaFilter and YouTube have been found to be vulnerable to
CSRF attacks in the past [ZF08], the increased awareness among web developers
and countermeasures integrated in popular frameworks resulted in a drastic
decrease in vulnerable websites. According to the OWASP Top Ten Project,
only 5% of current websites were found to be vulnerable, thus leading to the
exclusion of CSRF from the list of the ten most critical web application security
risks. Effective countermeasures, such as requiring an unguessable token in
requests, have been known for a long period [BJM08; ZF08], and have been
extensively applied [Van+14].

In contrast to CSRF, Cross-Site Script Inclusion (XSSI) and cross-site timing
attacks aim to derive sensitive information. XSSI attacks bypass the SOP in an
attempt to obtain information linked to the authenticated user account [Lek+15].
Timing attacks, on the other hand, try to construct sensitive data by observing
side-channel leaks [BB07; GH15; VJN15].

A recently proposed mechanism called same-site cookies aims to protect against
the whole class of cross-site attacks [WG16]. Same-site cookies are generic
cookies with an additional attribute named SameSite. Similar to other cookie
attributes, the SameSite attribute is determined by the website that sets the
cookie. This attribute can be given one of two values: lax or strict. When
the value is set to lax, the cookie may only be included in cross-site GET

BACKGROUND 25

requests that are top-level (i.e. the URL in the address bar changes due to
the request). An exception to this is a cross-site request initiated by Prerender
functionality [Chr11], in which this cookie is included anyway. When the
attribute value is set to strict, the cookie may never be included in any
cross-site requests.

At the time of writing, same-site cookies are supported by Chrome, Opera,
Firefox and Edge [KMG18; Mic18; Sta17]. Same-site cookies are backwards
compatible; browsers that do not offer support will just treat same-site cookies
as regular cookies. This, combined with the fact that same-site cookies are
mainly intended as an in-depth defense mechanism, encourages web developers
to still employ traditional defenses such as CSRF tokens to thwart cross-site
attacks. While the adoption of same-site cookies is still relatively small, with
only a few popular websites implementing them [Sha17], the fact that they
can mitigate a whole class of attacks makes them a very promising defense
mechanism.

2.2.2 Third-party tracking

Internet users can be tracked for a variety of purposes, often with economic
motives as the driving force behind it, e.g. advertising, user experience or
data auctioning [MM12]. One way of employing online tracking is through
embedded advertisements, which include tracking scripts to learn more about
the user’s interests and personalize the advertisements based on this information.
Alternatively, website administrators may include scripts from analytic services,
which gather insights in how users interact with their website, provided that this
service can also use the collected data for its own purposes. Moreover, websites
may embed functionality of a social platform through which users can engage
with each other. Because the resource containing embedded functionality is
requested upon each page visit, the social platform can track which websites
their users visit.

The main technique that is used to track users across different websites is by
means of third-party cookies. More precisely, a script that is included on a wide
range of websites, e.g. to display advertisements, triggers a request to the server
of the tracker. Subsequently, the tracker checks whether this request contains a
cookie, and either associates the triggered request with the profile of the user,
or creates a new profile and responds with a Set-Cookie header containing the
newly generated cookie. In the latter case, the user’s browser will associate the
cookie with the site of the tracker, and will include it in all subsequent requests
to it. This allows the tracker to follow users across all websites that include a
script that initiates the request to the tracker.

26 WHO LEFT OPEN THE COOKIE JAR?

Because of the raised awareness of online tracking among the general public,
many users delete cookies on a regular basis [com11], which results in a seemingly
new user profile from the tracker’s perspective. As a reaction, some online
trackers have resorted to more extensive tracking methods, such as respawning
cookies via Flash [Sol+09] and other web mechanisms [Aye+11], and browser
fingerprinting [Aca+14; Eck10; Sol+09; Yen+12]. As the evaluation presented in
this chapter mainly focuses on cookie policies imposed by browsers or browser
extensions, our main focus is on “traditional” user tracking by means of third-
party cookies. However, because the more recent tracking mechanisms also rely
on sending requests to the tracker, e.g. containing the browser fingerprint, these
are also subjected to the browser and extension policies. Bypasses of these
policies can also be leveraged by trackers to smuggle their requests past the
protection mechanisms.

2.3 Framework

Despite all standardization efforts, browser implementations may exhibit
inconsistent behavior or even deviate from the standard. Additionally, web
features from different standards may interfere with each other, causing
unintended side-effects, which may affect the security and privacy guarantees.
Despite prior efforts to verify these guarantees [JTL12; Ler+13], the real-world
prevalence of inconsistencies remains hard to measure as modern browsers consist
of millions of lines of code, or may be proprietary, preventing researchers access
to their source code. In this chapter, we evaluate the validity of constraints
that are imposed on stateful third-party requests, either by browsers themselves
or by browser extensions. Because of the limitations of source-code analysis,
we design a framework that considers browsers, in various configurations, as
a black box. This section outlines the design choices and implementation of
this framework. The source code of our framework has been made publicly
available.2

2.3.1 Framework design

The goal of our framework is to detect techniques that can be used to
circumvent policies that strip cookies from cross-site requests, or that try
to block these requests completely. To achieve this, our framework consists of
various components ranging from browser control to test-case generation. These

2https://github.com/DistriNet/xsr-framework

https://github.com/DistriNet/xsr-framework

FRAMEWORK 27

Figure 2.2: Design of the framework that we used to detect bypasses of imposed
cross-site request policies.

components and their interactions are depicted in Figure 2.2, and discussed in
the following sections.

Browser manipulation

The framework is driven by the Framework Manager component, which is
provided with information on which browsers and browser extensions need to
be analyzed. The manager instructs the Browser Control component to create
a specific browser instance with the predefined settings. The controller will
then instruct the browser instance to visit one of the generated test-cases by
leveraging browser-specific Selenium WebDriver3 implementations. Browsers
that do not have Selenium support, are controlled by manually configuring a
browser profile and are then launched through the command-line.

Test environment

Prior to executing all test scenarios, the browser instance is first prepared.
More specifically, on the target domain, i.e. the domain for which the test cases
will try to initiate an illegitimate cross-site request, we install several cookies.
Each of these cookies has different attributes: none, which does not impose
any restrictions on the cookies, HttpOnly, which restricts the cookie from being
accessed by client-side scripts, and Secure, which only allows this cookie to be
sent over an encrypted connection. Throughout the remainder of the text, we
refer to cookies as cookies with any one of these attributes, unless explicitly
stated otherwise. Furthermore, for browsers that support it, we installed two

3https://www.seleniumhq.org/

https://www.seleniumhq.org/

28 WHO LEFT OPEN THE COOKIE JAR?

cookies with the SameSite attribute: one with the value set to lax, and one
set to strict. Finally, we instruct the browser to route all requests through
a proxy, allowing us to capture and analyze the specific requests that were
initiated as part of a test.

2.3.2 Test-case generation

Because of the abundance of features and APIs implemented in modern browsers,
there exist a very large number of techniques that can be leveraged to trigger
a cross-site request. For each such technique, our framework generates a web
page containing a relevant test case.

Request-initiating mechanisms

As there exists no comprehensive list of all feature that may initiate a request,
we leveraged the test suites from popular browser engines, such as WebKit,
Firefox, as well as the web-platform-tests project by W3C4 to compose an
extensive list of different request methods. In addition, we analyzed several
browser specifications to verify the completeness of this list. What follows is a
summary of the mechanisms we used, subdivided into seven different categories.

HTML tags The first group of request mechanisms consists of HTML elements
that can refer to an external resource, such as , <iframe> or <script>
tags. Upon parsing the HTML document, the browser will initiate requests to
fetch the referred resources. As a basis, we used the HTTPLeaks project5, which
contains a list of all possible ways HTML elements can leak HTTP requests.
This list was combined with techniques related to features that were recently
introduced, and account for 196 unique methods. It should be noted that all
HTML-based requests only initiate GET requests.

Response headers Response headers allow websites to include extra informa-
tion alongside the resource that is served. We found that two classes of response
headers may trigger an additional request, either as soon as the browser receives
the headers or upon certain events. The first class of such response headers are
Link headers, which indicate relationships between web resources [Not10]. The
header can be used to improve page-load speeds by signaling to the browser
which resources, such as stylesheets and associated web pages, can proactively

4https://github.com/w3c/web-platform-tests
5https://github.com/cure53/HTTPLeaks

https://github.com/w3c/web-platform-tests
https://github.com/cure53/HTTPLeaks

FRAMEWORK 29

be fetched. In most cases, the browser will request the referenced resources
through a GET request.

The other class of response headers that initiate new requests are related to
CSP [WS23]. More precisely, through the Content-Security-Policy header6,
a website can, among other things, indicate which resources are allowed to
be loaded. Through the report-uri directive, websites can indicate that any
violations of this policy should be reported, via a POST request to the provided
URL. Recently, another directive named report-to has been proposed, which
allows reporting through the Reporting API [GW17]. As this directive and API
are not yet supported by any browser, we excluded them from our analysis.
Nevertheless, they are a prominent example of the continuously evolving browser
ecosystem, and highlight the importance of analyzing the unexpected changes
new features might bring along.

Redirects Top-level redirects are often not regarded as cross-site requests,
because stripping cookies from them would cause breakage of many existing
websites. Nevertheless, we included them in our evaluation for the sake of
completeness, because various scenarios exist in which top-level redirects can
be abused. For instance, a tracker trying to bypass browser mitigations can
listen for the blur event on the window element, which indicates that the user
switched tabs. When receiving this event, the tracker could trigger a redirect
to its own website in the background tab, which would capture information
from the user and afterwards redirect him back to the original web page. In
our framework, we evaluate redirection mechanisms through the Location
response header, via the <meta> tag, setting the location.href property and
automatically submitting forms.

JavaScript Browsers offer various JavaScript APIs that can be used to send
requests. For instance, the XMLHttpRequest API can be used to asynchronously
send requests to any web server [Moz17f]. More recently, the Fetch API
was introduced, which offers a similar functionality and intends to replace
XMLHttpRequest [Moz17b]. Similarly, the Beacon API can be used to
asynchronously send POST requests, and is typically used to transmit analytic
data as it does this in a non-blocking manner and the browser ensures the request
is sent before the page is unloaded [Moz17a]. Finally, there are several browser
features that allow web developers to set up nonstandard HTTP connections. For
instance, the WebSocket API can be used to open an interactive communication
session between the browser and the server [Moz17e]. Also, the EventSource

6There also exist experimental CSP headers such as X-Content-Security-Policy and
X-WebKit-CSP, as well as a report-only header.

30 WHO LEFT OPEN THE COOKIE JAR?

API can be used to open a unidirectional persistent connection to a web server,
allowing the server to send updates to the user [Moz18a]. The latter two
mechanisms are initiated using a GET request.

PDF JavaScript In addition to statically showing information, PDFs also
have dynamic features that are enabled through JavaScript code embedded
within the PDF file. For example, through the JavaScript code it is possible
to trigger POST requests by sending form input data. The capabilities of the
PDF and the JavaScript embedded within it, depend on the viewer that is used.
Next to the system-specific viewer, some browsers also implement their own
PDF viewer, which shows the contents in a frame. The viewer used by Chrome
and Opera, PDFium [Gooc], is implemented as a browser extension and does
support sending requests. To our knowledge, this is not the case for Firefox’
PDF.js library [Git], as we did not manage to simulate this, nor did we find
any source to confirm this.

AppCache API Although the AppCache API has been deprecated, it is still
supported by most browsers [Moz18b]. This mechanism can be used to cache
specific resources, such that the browser can still serve them when the network
connection is lost. Web developers can specify the pages that should be cached
through a manifest file. When the browser visits a page that refers to this file,
the specified resources, which may be hosted at a different domain, will be
requested through a GET request and subsequently cached.

Service Worker API Service workers can be seen as a replacement for the
deprecated AppCache API. They function as event-driven workers that can be
registered by web pages. After the registration process, all requests will pass
through the worker, which can respond with a newly fetched resource or serve
one from the cache. Next to fetching the requested resources, service workers
can also leverage most7 browser APIs to initiate additional requests.

Test compositions

The most straightforward way to initiate a new request is to include the
mechanism directly in the top-level frame. For example, for the purpose of
tracking, web developers typically include a reference to a script or image hosted
at the tracker’s server. However, because their top-level document can include
different documents through frames, it is possible to create more advanced test

7XMLHttpRequest is not supported in service workers.

FRAMEWORK 31

compositions. In our framework, we tested 8 test-case compositions, where
resources from different domains were included in each other, either through an
<iframe> or by specific methods, such as importScripts in JavaScript. As we
did not detect any behavior related to the test-case compositions, we omitted
the details from the chapter. We refer to Appendix A.1 for an overview of the
different compositions that were used.

2.3.3 Supported browser instances

In order to generalize our results, and detect inconsistencies we evaluated a
wide variety of browser configurations. These configurations range over the
different browsers and their extensions, considering all the relevant settings.

Web browsers

The primary goal of our evaluation was to analyze browsers for which
inconsistencies and bypasses would have the largest impact. On the one hand, we
included the most popular and widely used browsers: Chrome, Opera, Firefox,
Safari and Edge. On the other hand, we also incorporated browsers that are
specifically targeted towards privacy-aware users, and thus impose different rules
on authenticated third-party requests. For instance, Tor Browser makes use
of double-keyed cookies: instead of associating a cookie with a single domain,
the cookies are associated with both the domain of the top-level document as
well as domain that set the cookie. For example, when siteA.com includes a
resource from siteB.com that sets a cookie, this cookie will not be included when
siteC.com would include a resource from siteB.com. Finally, we also included
the Cliqz browser, which has integrated privacy protection that is enforced by
blocking requests to trackers.

Browser settings

Most modern web browsers provide an option to block third-party cookies.
While this can be considered as a very robust protection against both cross-
site attacks and third-party tracking, it may also interfere with the essential
functionality for websites that rely on cross-site communication. Moreover,
some browsers provide built-in functionality to prevent requests from leaking
privacy-sensitive information. For instance, Opera offers a built-in ad blocker
that is based on blacklists. By default, the anti-tracking and ad blocking lists
from EasyList and EasyPrivacy are used, but users are able to also define
custom ones. In our framework, we only considered the default setting of the

32 WHO LEFT OPEN THE COOKIE JAR?

built-in protection. Another browser that provides built-in tracking protection
is Firefox. Here, the mechanism is enabled by default when browsing in “Private
mode”, and also leverages publicly available and curated blacklists [KC15].

Recently, Safari introduced its own built-in tracking protection, which uses
machine learning algorithms to determine the blacklist [Weba]. Requests sent
to websites on this blacklist are subjected to cookie partitioning and other
measures to prevent the user from being tracked. For example, cookies will
only be included in a cross-site request when there was a first-party interaction
within the last 24 hours with the associated domain. Although we were unable
to infer the rules of these machine learning algorithms, we still subjected this
built-in option to our framework in order to be complete.

Browser extensions

Next to built-in tracking prevention, users may also resort to extensions to
prevent their browsing behavior and personal information from leaking to third
parties. As these extensions may also impose restrictions on how requests are
sent, and whether cookies should be sent along in third-party requests, we also
included various anti-tracking and ad blocking extensions. Due to the excessive
amount of such extensions, we were unable to test all. Instead, we made a
selection based on the extension’s popularity, i.e. the total number of downloads
or active users, as reported by the extension store. In total, we evaluated 46
different extensions for the 4 most popular browsers (Chrome, Opera, Firefox
and Edge). An overview of all extensions that were evaluated can be found in
Appendix A.2.

Most browsers’ anti-tracking and ad blocking extensions share a common
functionality. By making use of the WebRequest API [Moz17d], extensions
can inspect all requests that are initiated by the browser. The extension can
then determine how the request should be handled: either it is passed through
unmodified, or cookies are removed from the request, or the request is blocked
entirely. This decision is typically made based on information about the requests,
namely whether it is sent in a third-party context, which element initiated it,
and most importantly, whether it should be blocked according to the block list
that is used. It should be noted that for the browser extension to work correctly,
it should be able to intercept all requests in order to provide the promised
guarantees. This is exactly what we evaluate by means of our framework.

RESULTS 33

2.4 Results

By leveraging our framework that was introduced in Section 2.3, we evaluated
whether it was possible to bypass the policies imposed on third-party requests
by either browsers or one of their extensions. The results are summarized in
Table 2.1, Table 2.2, and Table 2.3, and will be discussed in more detail in the
remainder of this section. These three tables follow a similar structure. For each
category of request-triggering mechanism, we indicate whether a cookie-bearing
request was made for at least one technique within this category using a full
circle (). A half circle (G#) indicates that for at least one technique within that
category a request was made, but that in all cases all cookies were omitted from
the request. Finally, an empty circle (#) indicates that none of the techniques
of that category managed to initiate a request. Note that these results only
reflect regular, HttpOnly and Secure cookies. Same-site cookies are discussed in
Section 2.4.3. We refer to a more detailed explanation about the bug reporting
in Appendix A.3 through the indicated [bug#] tags. For a more detailed view
of detected leaks and leaks for future browser and extension versions, we kindly
direct you to our website.8

2.4.1 Web browsers and built-in protection

The results of applying our framework to the 7 evaluated browsers, both with
their default settings as with the built-in measures that aim to prevent online
tracking enabled, are outlined in Table 2.1. All tests are performed on the
browser versions mentioned in this table, unless stated otherwise. In general, it
can be seen that differences in browser implementations, often lead to differences
in results. The most relevant results are discussed in more detail in the following
sections.

Default settings

Under default configuration, nearly all of the most widely used browsers send
along cookies with all third-party requests. Exceptionally, due to enabling its
tracking protection by default, Safari only does so for redirects. We will discuss
this further in Section 2.4.1 with the other evaluated built-in options.

Besides Safari, the privacy-oriented browsers also generally perform better in
this regard: with a few exceptions, both Cliqz and Tor Browser manage to
exclude cookies from all third-party requests. Most likely because redirects are

8https://WhoLeftOpenTheCookieJar.com

https://WhoLeftOpenTheCookieJar.com

34 WHO LEFT OPEN THE COOKIE JAR?

AppCache HTML Headers Redirects PDF JS JavaScript SW
Chrome 63
- Block third-party cookies G# G# G# G# G#

Opera 51
- Block third-party cookies∗ G# G# G# G# G#
- Ad Blocker # #

Firefox 57 #
- Block third-party cookies G# G# G# # G# G#
- Tracking Protection #

Safari 11 #† G# # # G# N/A
- No Intelligent Tracking Prevention † # # N/A
- Block third-party cookies‡ † G# # N/A
Edge 40 G# # N/A
- Block third-party cookies G# # N/A
Cliqz 1.17∗ G# G# # G# G#
- Block third-party cookies G# G# G# # G# G#

Tor Browser 7 # G# G# # G# N/A

 : request with cookies G#: request without cookies #: no request
∗ Secure cookies were omitted in all requests.
† Safari does not permit cross-domain caching over https (only over http).
‡ Safari 10.1.2

Table 2.1: Results from the analysis of browsers and their built-in security and
privacy countermeasures.

not considered as cross-site (as the domain of the document changes to that of
the page it is redirected to), cookies are not excluded for redirects. However, as
we outlined in Section 2.3.2, this technique could still be used to track users
under certain conditions.
<img src=" data:image /svg+xml ,
<svg>
<image xlink:href= ’https: //
third-party.com /leak ’>
</ image>
</svg>">

Listing 2.1: Bypass technique found for Cliqz

Another interesting finding is that in the HTML category, we found that for
several mechanisms Cliqz would still send along cookies with the third-party
request. An example of such a mechanism is shown in Listing 2.1. Here an
element included an SVG via the data: URL. Possibly, this caused a confusion
in the browser engine which prevented the cookies from being stripped.

RESULTS 35

Third-party cookie blocking

In addition to the default settings, we also evaluated browsers when these were
instructed to block all third-party cookies. For Tor Browser, this feature was
already enabled by default. Consequently, Table 2.1 contains no results for Tor
Browser under these settings.

Similar to what could be seen from the results of the privacy-oriented browsers,
top-level redirects are not considered as third-party, and thus do not prevent a
cookie to be sent along with the request. One of the most surprising results
is that the browsers that use the PDFium reader to render PDFs directly in
the browser (Google Chrome and Opera), would still include cookies for third-
party requests that are initiated from JavaScript embedded within PDFs [bug1].
Because PDFs can be included in iframes, and thus made invisible to the end
user, and because it can be used to send authenticated POST requests, this
bypass technique could be used to track users or perform cross-site attacks
without raising the attention of the victim. This violates the expectations of
the victim, who presumed no third-party cookies could be included, which
should safeguard him completely from cross-site attacks. At the time of writing,
PDFium only provides support for sending requests, but does not capture any
information about the response. As such, XSSI and cross-site timing attacks
are currently not possible. However, as indicated in the source code9, this
functionality is planned to be added.

Because the option to block third-party cookies was removed from the latest
Safari, we had to use a previous version (Safari 10). We found that setting
cookies in a third-party context was successfully blocked. However, cookies -
set in a first-party context - were still included in cross-site requests [bug2].
On top of that, we also found that Safari’s option to block all cookies suffered
from somewhat the same problem. Likewise, it managed to block the setting of
third-party cookies, but cookies that were set before enabling this option were
still included in cross-site requests. This problem was solved in Safari 11 by
deleting all cookies upon enabling the option to block all cookies.

For Edge, we found that, surprisingly, the option to block third-party cookies
had no effect: all cookies that were sent in the instance with default settings,
were also sent in the instance with custom settings [bug3]. We believe that this
may have been the result of a regression bug in the browser, which disabled
support for this feature but did not remove the setting.

9https://chromium.googlesource.com/chromium/src/+/66.0.3343.2/pdf/out_of_proc
ess_instance.cc#1437

https://chromium.googlesource.com/chromium/src/+/66.0.3343.2/pdf/out_of_process_instance.cc#1437
https://chromium.googlesource.com/chromium/src/+/66.0.3343.2/pdf/out_of_process_instance.cc#1437

36 WHO LEFT OPEN THE COOKIE JAR?

Built-in protection mechanisms

In total, we evaluated three built-in mechanisms that protect against tracking
(Firefox’ and Safari’s tracking protection mode), or block advertisements
(Opera’s ad blocker). For Firefox and Opera, our framework managed to
detect several bypasses. Although Opera’s ad blocker managed to block all
requests that were triggered by headers or by JavaScript embedded in PDFs, in
all other categories cookie-bearing requests were made [bug4]. Although it did
manage to block certain requests, e.g. for HTML tags, out of the 58 requests
that were sent in the regular browsing mode, 6 were not blocked. These 6
bypass techniques spanned different browser mechanisms (CSS, SVG, <input>
and video), so it is unclear why these are treated differently.

For Firefox, we observed comparable results: although many requests were
blocked (e.g. for the HTML category, 46 out of 51 requests were blocked), for
each applicable category there was at least one technique that could circumvent
the tracking protection [bug5]. By analyzing the Firefox source code, we traced
the cause of these bypasses back to inconsistencies in the implementation. We
discuss this in more detail in Section 2.6.1.

In contrast to the former built-in options, Safari’s Intelligent Tracking Prevention
managed to mitigate all third-party cookies to a tracking domain, apart from
redirects. However, we found that future completeness can be undermined
by having this option disabled for even a short interval. Third-party cookies
set in this interval by tracking domains, which otherwise would have been
prevented, will still be included in cross-site requests after enabling the option
again, identical to the results when the option is disabled. Luckily, this option is
enabled by default, so future completeness can only be affected through explicit
disabling by the user. As we already mentioned in Section 2.3.3, third-party
cookies will be included if first-party interaction has been occurred in the last
24 hours. This can be provoked by redirects or pop-ups to the tracking domain,
although pop-ups are blocked by default.

2.4.2 Browser extensions

In total, we evaluated 31 ad blocking and 15 tracking protection extensions.
The results are summarized in Table 2.2 and Table 2.3 respectively. Due to
space constraints, we aggregated extensions in different sets when these shared
the same category-level results. Note that within a single set, extensions may
still exhibit different results within one category. An overview of all browser
extensions that were considered can be found in Appendix A.2. Guided by the
resulting data, we found several common causes for the discovered bypasses.

RESULTS 37

AppCache HTML Headers Redirect PDF JS JavaScript SW

Chrome

SET A1 (3/14)
SET A2 (3/14) # G#
SET A3 (1/14) # #
SET A4 (1/14) # # #
SET A5 (1/14) # # #
SET A6 (3/14) # # # #
SET A7 (2/14) # # # # #

Opera

SET A8 (2/9)
SET A9 (1/9) # G#
SET A10 (2/9) # #
SET A11 (1/9) # # #
SET A12 (1/9) # # #
SET A13 (1/9) # # # #
SET A14 (1/9) # # # # #

Firefox

SET A15 (2/5) G# # #
SET A16 (1/5) # # # #
SET A17 (1/5) # # # # #
SET A18 (1/5) # # # # #

Edge

SET A19 (1/4) G# # N/A
SET A20 (1/4) # # # N/A
SET A21 (1/4) # # # N/A
SET A22 (1/4) # # # # N/A

 : request with cookies G#: request without cookies #: no request

Table 2.2: Results from the analysis of ad blocking extensions per browser.

Considering the results of all Chrome- and Opera-based extensions, it is clear
that none of these managed to block the cookie-bearing third-party request
when the request is initiated by JavaScript code embedded within a PDF.
Although this result is similar to the results we observed when the browser was
instructed to block all third-party cookies, the specific cause slightly differs.
As the requests are sent from within a browser extension, the browser does
not regard it as a cross-site request, and thus does not strip its cookies in
the case when the “block third-party cookies” setting is enabled. However,
another issue arises when a browser extension wants to block these requests: the
WebExtension API does not allow an extension to intercept traffic from another
extension. Consequently, this issue can not be mitigated by the anti-tracking
and ad blocking extension developers [bug6].

Only few browser extensions correctly block cross-site requests initiated through
the AppCache API. By analyzing the source code of the bypassed extensions,
we found that these shared the same root cause. Although the listener for the
onBeforeRequest event was always able to intercept the request, the extensions
verified the provided tab identifier. However, for requests that originated from
AppCache, this identifier was set to -1, a value that was not expected by the
extension, as it may also be related to inherent browser functionality such as
address bar autocompletion. As extension developers try to prevent interfering
with regular browsing behavior, most extensions performed no actions on
requests that caused these unexpected parameters [bug8].

38 WHO LEFT OPEN THE COOKIE JAR?

AppCache HTML Headers Redirect PDF JS JavaScript SW

Chrome

SET B1 (1/6)
SET B2 (1/6) #
SET B3 (3/6) # #
SET B4 (1/6) # # # #

Opera
SET B5 (1/4)
SET B6 (2/4) # #
SET B7 (1/4) # # #

Firefox

SET B8 (1/4) #
SET B9 (1/4) # # #
SET B10 (1/4) # # # #
SET B11 (1/4) G# G# G# #

Edge SET B12 (1/1) # # N/A

 : request with cookies G#: request without cookies #: no request

Table 2.3: Results from the analysis of tracking protection extensions per
browser.

Furthermore, we found that for requests initiated from service workers bypasses
were made possible due to the same reasons. However, in this case Firefox-based
extensions did manage to block the third-party requests. We found that this
is because Firefox assigns the tab identifier to the tab on which the service
worker was originally registered. As a result, from the perspective of the browser
extension this seemed as a regular request, thus allowing the normal policies
to be applied. In total, we found that 26 browser extension policies could be
bypassed with the AppCache technique, and 20 through service workers.

Contrasting to extensions of other browsers, almost every Firefox-based
extension could be bypassed in the HTML category. In most cases, this
was caused by a <link> element, which rel attribute was set to "shortcut
icon". By further analyzing this case, we traced back the cause of this
issue to an implementation bug in the WebExtension API. We found that
the onBeforeRequest event did not trigger for requests originating from this
link element [bug7]. Although abusing this bug may not be straightforward,
as it is only sent when a web page is visited for the first time, it does indicate
that browsers exhibit small inconsistencies, which may often lead to unintended
behavior.

In the JavaScript category, we found that most extensions could be bypassed
with at least one technique: for the tracking extensions, only a single extension
managed to block requests initiated by JavaScript. Most prevalently, a
bypass was made possible because of WebSocket connections. We found that
a common mistake extension developers made, was in the registration on
the onBeforeRequest event. The bypassed extensions set the filter value
to [http://*/*, https://*/*], which would allow intercepting all glshttp
requests, but not WebSockets, which use the ws:// or wss:// protocol [bug8].
Hence, to be able to intercept all requests, the filter should include these

REAL-WORLD ABUSE 39

protocols or use <all_urls>. Of course, the configuration of the manifest file
should be updated accordingly.

In summary, we found that for every built-in browser protection as well as for
every anti-tracking and ad blocking browser extension, there exists at least one
technique that can bypass the imposed policies. Moreover, we found that most
instances could be bypassed by using different techniques, which have different
causes.

2.4.3 Same-site cookie

Through the tests we performed to evaluate the validity of same-site cookies,
we detected incorrect behaviors for Chrome, Opera and Edge. No bugs were
found for Firefox’ implementation of this policy.

For Chrome and Opera, the incorrect behavior was caused by the prerendering
functionality [Chr11]. By including <link rel="prerender" href="..."> on
a web page, the visitor’s browser will initiate a request to the referenced web
page. If this web page resides on another domain, the resulting cross-site request
will include all same-site cookies [bug9]. This bypasses the same-site cookie
policy as defined by the Internet Draft; only same-site cookies in lax mode are
allowed to be included.

For Edge (versions 16 and 17, which support same-site cookies), we detected
similar incorrect behaviors, although caused by different functionalities [bug10].
Here, <embed> and <object> tags can be leveraged to send cross-site requests
that include all same-site cookies, by pointing to another domain using the
src and data attributes respectively. This also holds for requests that are
sent for opening a cross-site WebSocket connection through the WebSocket
API. No same-site cookies should be included at all in these requests according
to the Internet Draft. On top of that, we also found that same-site cookies
in strict mode are included in requests initiated by a variety of redirects,
while this is only allowed for same-site cookies in lax mode. This was detected
for redirects through the <meta> tag, location.href property and Location
response header.

2.5 Real-world abuse

Tracking companies and advertisers have been reported to circumvent ad
blockers and anti-tracking extensions. For example, due to limitations of the
WebExtension API, Pornhub managed to circumvent all ad blocking extensions

40 WHO LEFT OPEN THE COOKIE JAR?

by leveraging WebSockets [Bug16]. As a response, several popular ad blocking
extensions such as Adblock Plus and uBlock implemented a mitigation that
would override the WebSocket prototype. Soon after, this mitigation was again
circumvented by Pornhub, who this time leveraged WebWorkers.10 Only when
support for intercepting WebSocket connections was added to the WebExtension
API, browser extensions managed to prevent Pornhub’s bypasses. However,
as our results show, not all browser extensions have adopted these defenses.
Motivated by the seemingly strong incentives of certain trackers to circumvent
request and cookie policies imposed by browser extensions, we performed an
experiment to analyze whether any of the bypass techniques introduced in this
chapter are actively being used in the wild.

2.5.1 Use of bypass methods

We performed a crawl of the 10,000 most popular websites according to Alexa.
For each website, we visited up to 20 pages with a Headless Chrome instance
(version 64.0.3282.119, on Ubuntu 16.04), and analyzed all requests that were
initiated by one of the new bypass techniques we reported in Section 4.5. In
total, 160,059 web pages were visited by our crawler, and on each page we
analyzed all third-party requests.

Next, we determined whether a cross-site request should be classified as tracking
or advertising. To this purpose, we used the EasyList and EasyPrivacy lists11

which contain regular expressions used by various popular browser extensions
to determine whether requests should be blocked. In Table 2.4, we show the
number of unique tracking or advertising domains, that make use of one of
the bypass techniques that we found to be most successful. We only count the
second-level domain name of the tracker or advertiser to whom the request was
sent.

To evaluate whether the advertising or tracking host leveraged one of the
techniques to purposely circumvent browser extensions, we visited the web
pages on which these trackers or advertisers were included. For each page visit,
we enabled the browser extension that may be bypassed with the detected
technique. We found that all uses of the methods were legitimate, and the
requests to the trackers and advertisers were never initiated because either the
script or frame containing the bypass functionality was preemptively blocked.
Although we did not encounter any intentional abuse in the 10,000 websites
we analyzed, it is possible that trackers may actively try to avoid detection,
for instance by only triggering requests upon human interaction. Moreover, as

10https://github.com/gorhill/uBlock/issues/1936
11https://easylist.to/

https://github.com/gorhill/uBlock/issues/1936
https://easylist.to/

REAL-WORLD ABUSE 41

Category Technique Tracking
domains

Advertising
domains

AppCache CACHE: 0 1

Header
Link: <url>; rel=next 0 0
Link: <url>; rel=prefetch 0 1
CSP: report-uri: url 8 1

JS sendBeacon(url) 56 18
new WebSocket(url) 27 7

HTML
<link rel="shortcut icon" 4 10
<link rel=apple-touch-icon 0 2
 0 3

Table 2.4: Unique number of tracking or advertising domains that make use of
one of the potential bypass techniques

there exists a very wide spectrum of advertisers and trackers, some of these
may not have been present in our dataset.

2.5.2 Evaluating unknown techniques

In order to evaluate whether any bypass technique was used that was not
detected by our framework, we compared the DNS traffic generated by every
of the 160,059 visited web pages with the requests that we could detect from
each visit. More precisely, we ran every browser instance in a separate Linux
namespace and used tcpdump to capture all DNS requests the browser generated.
Next, we aggregated all DNS requests that could not be traced back to a captured
request and used an aggregated list12 to mark those directed towards trackers
and advertisers. These DNS requests could be indicative of a bypass technique
we were previously unaware of.

The preliminary analysis of this data indicated that 4,701 web pages triggered
DNS requests for which we did not capture any HTTP request. However, we
found that in most cases new resources were still being loaded when we closed
the web page (15 seconds after opening it). We re-evaluated these web pages
but now allowed the browser 120 seconds to finish loading all resources. This
resulted in 865 web pages that triggered a non-corresponding DNS request to
a total of 77 different hosts. A manual analysis of these showed that the vast

12https://github.com/notracking/hosts-blocklists

https://github.com/notracking/hosts-blocklists

42 WHO LEFT OPEN THE COOKIE JAR?

majority was due to DNS prefetching and the remainder was still caused by
requests that were interrupted when closing the browser. These results indicate
the completeness of our framework, as we did not find any bypass technique
that our framework was unable to detect.

2.6 Discussion

As we have shown in Section 4.5, through our framework, which evaluated
several browsers and browser extensions in various configurations, we uncovered
numerous instances where an authenticated third-party request could circumvent
the imposed restrictions. We found that this unintended behavior can be
traced back to several factors, which can be classified as implementation errors,
misconfiguration and design flaws. In this section, we discuss which measures
can be taken to remedy the discovered circumventions.

2.6.1 Browser implementations

Most of the browsers that we evaluated have built-in support for suppressing
cookies of third-party requests. Our results show that only the Gecko-based
browsers (Firefox, Cliqz and Tor Browser) manage to do this successfully.
Surprisingly, we found that the blocking of third-party cookies feature in Edge
had no effect. We believe that this is due to an oversight from the browser
developers or a regression bug introduced when new functionality was added.

For the Chromium-based browsers (Google Chrome and Opera), we found that
because of the built-in PDF reader, an adversary or tracker can still initiate
authenticated requests to third-parties. Because the request is triggered from
within the extension, different directives apply, thus allowing cookies to be
attached. A possible mitigation for this particular issue could be to disable the
functionality of triggering requests from within PDFium. However, this behavior
is not unique to PDFium, and other browser extensions may also be exploited in
order to send arbitrary third-party requests that bypass imposed cookie policies.
As such, we propose that browsers strip cookies from all requests initiated by
extensions as a default policy. As this may interfere with the operations of
certain extensions, exclusions should be made possible, for instance by defining
a list of cookie-enabled domains in the extension manifest.

Next to blocking third-party cookies, we also analyzed the built-in tracking
protection for Firefox. Interestingly, we found that for each category of
mechanisms that may trigger requests, excluding JavaScript in PDFs, there

DISCUSSION 43

exists at least one technique that can bypass the built-in tracking protection.
A manual analysis of the Firefox source code showed that these bypasses are
caused by the retroactive manner in which tracking protection is implemented.
More specifically, although the request-validation mechanism is applied in a
central location, the validation process is only triggered when a specific flag
is set, which requires modifications to every functionality that may trigger
requests. While Mozilla is already aware13 of some of the bypasses we uncovered
and is working to mitigate these, we believe that our framework will assist in
identifying bypass techniques, even when these are difficult to detect from the
millions of lines of code.

2.6.2 Browser extensions

For anti-tracking extensions and ad blockers, it is crucial that all requests
can be intercepted and blocked or altered. From the results, summarized in
Table 2.2 and Table 2.3, it is clear that in the current state this is not the
case. In fact, we found that for every analyzed browser extension there exists
at least one technique that can be used to circumvent the extension to send an
authenticated third-party request. Moreover, we found that the results of the
evaluated browser extensions are very disparate, even for extensions that target
the same browser. For instance, out of the 15 ad blocking extensions for Google
Chrome, at most 3 exhibited a similar behavior.

In part, the disparity of results can be explained by the frequent introduction
of new features to browsers, which may affect the WebExtension API or cause
unforeseen effects. For instance, support for intercepting WebSockets in browser
exceptions was only added years after the feature became available, and after it
had actively been exploited to circumvent ad blockers[Chr12a]. Furthermore,
AppCache caused one of the parameters of the onBeforeRequest API to exhibit
a different behavior, which was unexpected by most browser extensions. As a
result, requests triggered by AppCache managed to bypass the vast majority
of browser extensions. The same change was introduced to Chromium-based
browsers when Service Workers were implemented. As a result, most extensions
for Chrome and Opera can be circumvented by triggering requests from Service
Workers, whereas all extensions Firefox successfully block these third-party
requests. This shows that adding new features to a browser may have unforeseen
side-effects on the extensions that rely on the provided APIs.

When new browser features are proposed and implemented, test cases that
include the new functionality can be added to our framework, allowing browser
vendors and extension developers to automatically detect and possibly mitigate

13https://bugzilla.mozilla.org/show_bug.cgi?id=1207775

https://bugzilla.mozilla.org/show_bug.cgi?id=1207775

44 WHO LEFT OPEN THE COOKIE JAR?

unforeseen side-effects. Moreover, because all anti-tracking and ad blocking
browser extensions share a common core functionality (namely, intercepting
and altering or blocking requests), we propose that all these extensions use a
specifically purposed API that is actively maintained. Driven by the high
popularity of these browser extensions, this API could be added to the
WebExtension API. Alternatively, this API could be offered in the form of
an extension module, which of course needs to be maintained and requires all
browser extensions to update this module.

2.7 Related work

Policy implementation inconsistencies Multiple studies have shown that
browser implementations often exhibit inconsistencies concerning security or
privacy policies. Aggarwal et al. [Agg+10] discovered privacy violations for
private browsing implementations of modern browsers through both manual
and automatic analysis. On top of that, they showed that browser extensions
and plug-ins can invalidate the privacy guarantees of private browsing. Schwenk
et al. [SNM17] implemented a web application that automatically evaluates the
SOP implementation of browsers. In that regard, they showed that browser
behaviors differ due to the lack of a formal specification. Singh et al. [Sin+10]
pointed out the incoherencies in web browser access control policies. In an
effort to help browser vendors find the balance between keeping incoherency-
confirming features and the breakage of websites as a consequence of removing
them, they developed a measurement system. Jackson and Barth [JB08], too,
showed that newly shipped browser features can undermine existing security
policies. In particular, they discuss features affected by origin contamination and
propose three approaches to prevent vulnerabilities caused by the introduction
of these features. Zheng et al. [Zhe+15] question the integrity of cookies by
revealing cookie injection vulnerabilities for major sites like those of Google and
Bank of America. They showed that implementation inconsistencies in browsers
can aggravate these vulnerabilities.

Ad blocking circumventions Iqbal et al. [ISQ17] examined methods that are
used to circumvent ad blocking in the wild. They discuss the limitations of
anti-adblock filter lists and proposed a machine learning approach to identify
ad block bypasses. Storey at al. [Sto+17] also proposed new approaches to ad
blocking, countering the existing flaws of traditional ad blocking methods. Their
new techniques include recognition of ads trough the use of visual elements,
stealth ad blocking and signature-based active ad blocking.

CONCLUSION 45

Trackers in the wild Roesner et al. [RKW12] performed an in-depth empirical
investigation of third-party trackers. Based on the results of this investigation,
they proposed a classification for third-party trackers and developed a client-
side application for detecting and classifying trackers. A large-scale crawl
was performed by Englehardt and Narayanan [EN16] to gather insights about
tracking behaviors in the wild. They found that tracking protection tools such
as Ghostery proved effective for blocking undesirable third-parties, except for
obscure trackers.

2.8 Conclusion

In this work, we introduce a framework that is able to perform an automated
and comprehensive evaluation of cross-site countermeasures and anti-tracking
policy implementations. By evaluating 7 browsers and 46 browser extensions, we
find that virtually every browser- or extension-enforced policy can be bypassed.
We traced back the origin of these bypasses to a variety of different causes. For
instance, we found that same-site cookies could still be attached to cross-site
requests by levering the prerendering functionality, which did not take these
policies correctly into account.

Furthermore, a design flaw in Chromium-based browsers enabled a bypass for
both the built-in third-party cookie blocking option and tracking protection
provided by extensions. Through JavaScript embedded in PDFs, which are
rendered by a browser extension, cookie-bearing POST requests can be sent to
other domains, regardless of the imposed policies. Additionally, we discovered
that not every implementation of the WebExtension API guarantees interception
of every request. This makes it impossible for extension developers to be
completely thorough in blocking or modifying undesirable requests.

Overall, we found that browser implementations exhibited a highly inconsistent
behavior with regard to enforcing policies on third-party requests, resulting in
a high number of bypasses. This demonstrates the need for browsers, which
continuously add new features, to be thoroughly evaluated.

The results of this research suggest that policy implementations are prone to
inconsistencies. That is why we think that, as future research, the framework
could be extended to evaluate other policy implementations (e.g. LocalStorage
API [Mozh], Content Security Policy [WS23]). In addition to that, the evaluation
of mobile browsers could also be an interesting direction. This includes the
mobile counterparts of major browsers for iOS and Android, but also mobile
exclusives like Firefox Focus [Mozl].

3
A Bug’s Life

Analyzing the Lifecycle and
Mitigation Process of Content
Security Policy Bugs

Nobody really cares about killing
insects.
Even the animal rights people
don’t care.

– Jerry Seinfeld [BSA95]
(Seinfeld, 1995)

This chapter was previously published as:

G. Franken, T. Van Goethem, L. Desmet, and W. Joosen. “A Bug’s Life:
Analyzing the Lifecycle and Mitigation Process of Content Security Policy
Bugs”. In: 32nd USENIX Security Symposium (USENIX Security 23).
Anaheim, CA: USENIX Association, Aug. 2023, pp. 3673–3690. isbn:
978-1-939133-37-3

Chapter 2 and numerous complementing studies, have shed light on significant
implementation deficiencies of security and privacy policies. While these studies
have played a vital role in ongoing efforts to secure the Web, the origins of
these persistent issues have only been supported by anecdotal evidence. In
this chapter, we present the first comprehensive study that provides insights

47

48 A BUG’S LIFE

into the root causes of implementational shortcomings of a browser security
policy, CSP, substantiated by robust empirical data. Moreover, by refraining
from depending on the information provided by bug reports, we were able to
uncover inconsistencies in bug handling procedures, including the premature
public disclosure of three security bugs.

To facilitate this project, we developed the BugHog framework, specifically
tailored for the precise identification of bug introductions and fixes by code
revisions, through the dynamic evaluation of bug proofs of concept (PoCs).
A dynamic analysis of CSPs complete development history necessitates the
execution of browser binaries of over a decade old. This task is often impeded by
compatibility issues between the browser binaries and the outdated, deprecated
or unsupported libraries in de package manager of the host OS. To overcome
these challenges, we containerized the entire framework using Docker, which
allowed us to execute any binary within a compatible environment in which all
dependencies are taken care of. This sets BugHog apart from all other bisection
tools, where dependency management is considered the user’s responsibility.
Another notable benefit of this approach is that the framework is compatible
with any OS that supports Docker.

The BugHog framework has been released as open-source, with a commitment
to maintain it for ongoing research purposes.1 Other than for the historical
assessments of various policies beyond CSP, it can also be employed to pinpoint
the exact lifecycle of complex multi-stage exploits, thanks to its dynamic
evaluation approach. As such, we argue that BugHog poses a valuable tool in
the hands of both security researchers and browser developers. Even when an
analysis requires lifecycle identifications for a substantial collection of bugs, this
can be efficiently managed because of BugHog’s built-in concurrency capability.

We reached out to all affected browser vendors to inform them of four publicly
disclosed security bugs that were still affecting their most recent release version.
As a result of these reports, three of the vulnerabilities were successfully
addressed, while one was determined not to be a bug.2 Additionally, we
have proposed concrete resolutions and recommendations aimed at enhancing
the current bug handling processes.

This work was awarded with a Distinguished Paper Award.
1https://github.com/DistriNet/BugHog
2This bug was initially reported for Chromium, where it was acknowledged but not

yet resolved. When we discovered that it also impacted Safari and reported it, it was not
considered a bug by WebKit developers.

https://github.com/DistriNet/BugHog

INTRODUCTION 49

3.1 Introduction

Since their inception, web browsers have grown to become immense applications
comprising tens of millions of code lines, introducing new features with virtually
every major release. To keep up this pace, over 100 code revisions are applied
to their code base every single day [RMJ15], ranging from bug fixes to new
feature introductions. Although this pushes the Web forward in many great
ways, meanwhile, browser vendors need to make a continuous effort to guard
against newly discovered attacks and bypasses for both established and new
security policies.

Unfortunately, numerous CVE reports and an extensive body of research have
previously exposed countless vulnerabilities facilitated by flawed browser security
policy implementations. More specifically, various shortcomings of essential
security policies such as the CSP [HMN15], Same-Origin Policy [SNM17],
SameSite cookie policy [FVJ18] and access control policies [Sin+10] have been
discovered and exhibited. In several cases this makes the security policy, which
websites often rely on to safeguard their users, obsolete until a mitigation
is in place. Furthermore, vulnerabilities are often caused by inconsistent
implementations among browsers as well [Cal+20; Luo+19; Sie+22; Wi+23].
However, the granularity of these studies halts at the level of browser release
versions, disregarding information related to the individual revisions that cause
or fix a bug.

To close this research gap, we performed a longitudinal study on the introducing
and fixing source code revisions of bug lifecycles for CSP, one of the most
longstanding and important security policies of the Web. Given both the
importance of CSP and its extensive implementational lifetime of close to a
decade, we take advantage of both the large number of reported bugs and the
many code changes that have affected it. By collecting 86 publicly disclosed bug
reports that entail the subversion of correct CSP enforcement, we identified 75
unique bugs for which we replicated a PoC, that was then used to construct a
dynamic evaluation on reproducibility. Subsequently, leveraging our automated
framework, BugHog, we identified the complete bug lifecycles in the open-
source Chromium and Firefox browsers. As such, having evaluated over 100, 000
revision binaries, we were able to pinpoint 46 unique revisions that introduce a
bug, 71 that fix a bug and six that do both. To the best of our knowledge, this
is the first comprehensive bug lifecycle analysis considering individual revisions,
based on the dynamic analysis of a browser policy implementation.

Our analysis shows that half of the CSP bugs were already present at the time
of the policy’s introduction, among which a severe Chromium vulnerability with
subsequent bug bounty of $5000 (CVE-2021-30531) [Chr20a]. After undermining

50 A BUG’S LIFE

the effectiveness of CSP for a period of more than eight years, the issue was
ultimately fixed in 2021, highlighting how even severe bugs can stay under the
radar for extensive periods of time. Besides these so-called foundational bugs,
a large part was introduced by revisions intended to fix other CSP bugs or
redesigns of the underlying code structures, demonstrating the fragile nature of
CSP-related source code.

In our analysis we employed a dynamic evaluation, in contrast to static evaluation
based on bug reporting information in prior work [Ale+22; BBB16; Bra+22b;
CMN15; FAW13]. This allowed us to perform a cross-browser evaluation of
all reported bugs, reproducing bugs reported for one browser throughout the
revision history of the other. This way we found 14 shared bugs, among which
seven could be completely avoided or reduced in lifetime if bugs were more
effectively shared between vendors. Furthermore, we could reproduce four of
the collected bugs in Safari’s most recent version. Additionally, we identify
several other bug handling flaws such as inconsistent revision linking and report
labeling. More severely, our evaluation detected three bugs that were labeled as
fixed and eventually publicly disclosed while the fixing revision was not effective,
leaving the browser vulnerable unbeknownst to the developers. Two of these
bugs remained public and unfixed for at least a year, and one was only fixed
after we reported the issue.

We make the following contributions:

• We developed BugHog, a framework for pinpointing introductions and
fixes of browser security policy bugs at the level of individual code revisions.
This framework is released as open-source upon publication of this work,
and can be extended to facilitate the evaluation of other security policy
implementations as well.

• To the best of our knowledge, we performed the first systematic lifecycle
analysis based on dynamic evaluations over the full history of a browser
security policy. As such, we analyzed 75 reported CSP bugs for Chromium
and Firefox, covering 123 unique code revisions that caused an introduction
or fix.

• Based on our thorough analysis, we diagnosed several flaws regarding
security policy implementations and bug handling practices, causing a
needless escalation of security implications.

• Finally, we propose several remedies to these issues, such as more rigorous
bug sharing between vendors and more stringent bug handling practices.

BACKGROUND 51

3.2 Background

In this section, we explain the foundational concepts of current browser
development practices and CSP.

3.2.1 Web browser development

Web browser vendors utilize various development practices, among which version
control and regression testing.

Version control

Web browsers, being code development projects consisting of tens of millions
of code lines, are developed, managed and maintained by leveraging a version
control system (VCS). Although Chromium and Firefox employ different VCSs
(i.e. Git3 and Mercurial4, respectively), their underlying functionality is very
similar. However, the employed version control strategies of the two projects
slightly differ.

Chromium developers apply a trunk-based development pattern to a single
repository (Figure 3.1), where each developer directly commits to a so-called
trunk branch (e.g. instead of using feature branches) [Goo22; Tru]. Source code
is prepared for building the release binary (e.g. disabling experimental features)
on a so-called release branch forked at regular intervals from the trunk. Only in
special cases, like urgent security fixes, a revision on the trunk is cherry-picked
and merged onto such a release branch [Boo15].

Firefox manages four separate repositories, each associated with a different
release channel (Figure 3.2). All code revisions are by default applied to the
mozilla-central repository (i.e. nightly), where all revisions are periodically
imported into mozilla-aurora. This process is repeated for each repository,
such that all revisions will be consecutively imported to the mozilla-beta and
eventually mozilla-release repositories. In particular cases, developers might
decide to uplift a feature or a patch to mitigate a severe vulnerability on a more
stable channel[Mozb; Mozc].

In conclusion, all revisions are eventually landed on a single branch or repository,
being Chromium’s trunk or Firefox’s mozilla-release repository.

3https://git-scm.com
4https://www.mercurial-scm.org/

https://git-scm.com
https://www.mercurial-scm.org/

52 A BUG’S LIFE

commit severe patch
trunk

uplift to release

Figure 3.1: Chromium’s development practice where all applied revisions are
periodically forked into a release branch.

mozilla-central

mozilla-aurora

mozilla-beta

mozilla-release

uplift to mozilla-beta

commit severe patch

Figure 3.2: Firefox’s development practice where all applied revisions are
periodically imported to a more stable repository.

Regression testing

In addition to their own specific test suites, Chromium [Goob] and Firefox [Firb]
share a common cross-browser test suite called Web Platform Tests (WPT)
since September 2014 for identifying potential regressions (i.e. previously fixed
issues that have been inadvertently reintroduced) [Bug13; Chr14; web]. Both
browser vendors depend on and contribute to the project, which serves as a
comprehensive set of checks to confirm compliance to established web standards,
including security prerequisites. According to both vendors’ contribution policies,
each revision or patch should successfully complete all regression tests before it
can be landed [Chrd; Fira].

Contributors to the Chromium project are advised to use one of two procedures
to track down the introduction or fix of a regression. One option is utilizing
their bisect-builds.py script which automates a binary search over a bounded
revision range of publicly hosted revision binaries, though the user is required to
manually check for each binary whether the bug is reproduced [Chrb]. The other
recommended practice utilizes git bisect, which is able to discern whether
a revision reproduces the targeted issue in an automated manner if provided

BACKGROUND 53

with the appropriate script and test files [Goob]. Nonetheless, this evaluation
requires checking out and building each revision that is to be evaluated, making
it resource-intensive.

Firefox provides a tool for bisecting regressions as well; similar to Chromium’s
script, their so-called autobisect tool relies on publicly available revision
binaries [Mozn]. However, this bisection tool is fully automated since the script
can autonomously distinguish between test case results.

In Section 3.3.2, we discuss the advantages and limitations of each approach,
compared to BugHog.

3.2.2 Content Security Policy

CSP version 1 was originally proposed as an in-depth defense mechanism against
content injection attacks such as XSS [Mozf; SB12; SSM10]. Websites can deploy
a policy by providing the Content-Security-Policy header or <meta> tag in
their response, and consequently the browser will enforce the defined policy
client-side.5

CSP provides developers with several directives for enabling different blocking
rules over different resource types. For instance, the policy defined below
demonstrates this content blocking use case, and will only permit the browser
to load scripts from third-party.com, while all other resources must originate
from the current website (indicated by self). In this study, we distinguish
between two subclasses of the content control use case: active content control
(i.e. script blocking) and non-active content control (i.e. frames).

default-src ’self ’; script-src third-party.com

Subsequent versions of CSP, specifically CSP 2 and CSP 3, introduced additional
functionality to the policy specification, among which new directives and
keywords [WBV16; WS23]. For instance, the nonce keyword provides developers
with the ability to allow inline script inclusion while simultaneously safeguarding
against script injections through the use of a secret nonce.

Moreover, new use cases have been introduced, such as the upgrade-insecure-
requests directive, which facilitates the automatic upgrading of all requests
made over unencrypted channels (e.g. HTTP) to secure channels (e.g. HyperText
Transfer Protocol Secure (HTTPS)), thereby enforcing Transport Layer Security

5Note that before the actual introduction of CSP, several browsers already employed
an experimental implementation under the X-Content-Security-Policy and X-WebKit-CSP
headers.

54 A BUG’S LIFE

(TLS) encryption. Another important use case is framing control, which is
facilitated by the frame-ancestors directive. This directive allows developers
to specify which origins are permitted to embed the website within an iframe
to prevent clickjacking attacks. Lastly, the referrer directive grants developers
control over the Referer request header when users navigate from the current
website. Previous studies have already highlighted a similar differentiation
between CSP use cases [Rot+; Wei+16].

The inheritance of a policy between browsing contexts presents significant
challenges for CSP designers and implementers. When creating a new browsing
context, such as embedding an iframe or opening a new window, the enforced
policy is inherited from the opener browsing context in specific situations. For
example, new browsing contexts with a blob: or data: URL should inherit
the employed policy from the opener context. However, exercising excessively
lax policy inheritance can create opportunities for CSP subversion, whereas
overly stringent inheritance may result in cross-site leaks (XS-Leaks) [Kni+21].
XS-Leaks allow malicious actors to exploit CSP to extract user state information
from cross-site services, leading to potential privacy breaches. For instance,
a malicious website could employ a CSP policy that permits navigation to a
benign website, but restricts access to the landing page to which logged-in users
are redirected. This way, the adversary can infer the presence of an active
session on the benign site through CSP’s violation report, obtained through the
report-to CSP directive.

Figure 3.3 depicts an overview of all CSP use cases and bug classes. We refer to
Mozilla Developer Network for a comprehensive overview of all CSP directives
and keywords [Mozf].

3.3 Methodology

In this section, we cover all stages of our research, including the design of
BugHog, utilized to identify bug lifecycles.

3.3.1 Bug collection and reproduction

All bugs were collected from Chromium’s6 and Firefox’s7 public bug tracking
platforms. For both platforms, bug reports are by default confidential until a
fix has been widely deployed [Chrc; Moza]. Unfortunately, we did not receive a

6https://bugs.chromium.org/
7https://bugzilla.mozilla.org/

https://bugs.chromium.org/
https://bugzilla.mozilla.org/

METHODOLOGY 55

response from the WebKit Security team regarding our inquiry for access to
fixed WebKit bugs.

To ensure comprehensiveness and enable an evaluation of applied bug report
labels, we adopted broad search criteria. For instance, we did not rely on any
specific CSP labels, but instead used keywords that are matched against the
content of bug reports. This approach ensures that any potential oversights in
developer labeling do not impact the integrity of our dataset. Subsequently, we
filtered out all bugs that were not related to CSP, by manually inspecting the
included bug description. In total, we collected 86 bug reports; 58 for Chromium
and 28 for Firefox, a ratio which is similar to that of prior studies [FAW13]. In
case two or more bug reports described the same bug, we considered it as one
bug. As such, we collected 75 unique bugs in total. We refer to Appendices B.1
and B.2 for more details about the collection and filtering process. Figure 3.3
shows all CSP bug classes that were identified in our dataset, along with the
number of associated bugs.

Unfortunately, there is currently no standardized format for documenting bugs
or vulnerabilities, and not all reports include practical tests that demonstrate
the issue effectively. Consequently, we were required to manually develop and
incorporate bug PoCs into BugHog. In the best case, the report included the
necessary HTML, CSS, and JavaScript code, resulting in a minimal effort to
recreate the PoC. In the worst case, we had to rely on the textual description
provided by the reporter and manually construct the PoC ourselves.

To avoid discrepancies, PoCs were integrated into BugHog with minimal
modifications. However, the original PoC might employ a more recent web
mechanism that is not supported in older revisions. In such cases, we
emulated the desired web mechanism using its predecessor(s), such as converting
JavaScript to ECMAScript 5, whenever feasible. The validity of each recreated
PoC was verified through manual testing, which involved running the PoC for a
binary affected by the bug and another that was not affected.

3.3.2 Automated lifecycle identification

BugHog is designed to evaluate an extensive range of individual revisions of the
Chromium and Firefox browsers, in order to identify a bug’s complete lifecycle,
from bug introduction to mitigation. In the following sections, we discuss the
three main tasks of BugHog: selecting the appropriate revisions to evaluate,
collecting the selected revision binaries and performing a dynamic evaluation on

56 A BUG’S LIFE

Content control (61)

CSP-enabled XS-Leak (10)

Active content
 control (47)

Non-active
 content control (14)

TLS enforcement (1) Framing control (2) Referrer header
 control (1)

CSP bypass (65)

Figure 3.3: Overview of all CSP use cases and bug classes with the respective
bug frequency in our dataset.

Manager

Evaluation

instance 1

Evaluation

instance N

spawns

spawns

spawns

PoC websitevisits

visits

BinariesOnline repo

information

Evaluation

instance 2

visits

Database

consults and stores

downloads
consults

Figure 3.4: High-level overview of BugHog. The Docker logo indicates that a
component is run inside its own Docker container.

the collected binaries. We have made the source code of our framework publicly
available.8

Overview

Figure 3.4 shows a high-level overview of BugHog covering three main
components (indicated in bold), each of which runs inside its own Docker
container. All Docker images are built on top of the Debian GNU/Linux 10
(buster) base image.

8https://github.com/DistriNet/BugHog

https://github.com/DistriNet/BugHog

METHODOLOGY 57

Manager. This component is responsible for managing the evaluation instance
containers used for dynamic binary evaluation. Its core tasks consist of selecting
the appropriate revision binary to evaluate next, to download this selected
binary and to spawn a helper container to perform the actual evaluation.

Evaluation instance. This component performs the actual dynamic evalua-
tion by instructing the browser binary to visit one or more PoC web pages.
Since this Docker image needs to support a very wide range of browser versions
(Chromium v25 - v109, Firefox v23 - v109), a large number of dependencies has
to be fulfilled in order to execute all required binaries. Even though several
older (deprecated) dependencies were not available through a package manager,
we still managed to fulfill this requirement through manual installation.

PoC website. This component hosts an Nginx and Flask web server
incorporating all bug PoCs. Each PoC is integrated by providing web page
source code and the order in which these web pages are to be visited to reproduce
the exploit. Various configuration options are supported, such as defining values
of the response status and headers. During the evaluation, all communication
between the browser binary and the local web server is recorded through a
proxy such that the outcome of the evaluation can be discerned; whether the
bug can be reproduced or not.

Apart from the three main components, BugHog utilizes MongoDB for storing
the results of each revision evaluation, enabling subsequent querying of the data.
Finally, we use publicly available revision binaries hosted by each vendor for our
dynamic evaluation and scrape online repository information to traverse over
revisions.910 We only require access to browser source code for building binaries
if the available online binaries are insufficient to pinpoint an exact revision.

Collecting revision binaries

Revision binaries are obtained by either downloading them or building them
from source.

Downloading. Besides hosting binaries of release versions, both Chromium11

and Firefox12 host additional binaries based on certain source code revisions as
well. From these collections, it appears that Chromium builds a binary multiple

9https://chromium.googlesource.com/
10https://hg.mozilla.org/
11https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.

html
12https://ftp.mozilla.org/pub/firefox/

https://chromium.googlesource.com/
https://hg.mozilla.org/
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://commondatastorage.googleapis.com/chromium-browser-snapshots/index.html
https://ftp.mozilla.org/pub/firefox/

58 A BUG’S LIFE

times per hour, while Firefox seems to build a binary every 12 hours. If a
to-be-evaluated revision binary is not available, BugHog will download the
one closest available.

Building. If vendor-hosted revision binaries are not sufficient to infer the
introducing or fixing revision, we build binaries from source. This way, we were
able to obtain all binaries necessary for the evaluation of all collected bugs.

Revision evaluation selection and order

The scope of this work covers CSP in the form of the currently em-
ployed Content-Security-Policy header or <meta> tag. We did not
extend our analysis to experimental precursors such as X-WebKit-CSP and
X-Content-Security-Policy [Mozf], since these were not shipped as finished
policy implementations, and as such, are not assumed to be bugless.

CSP 1.0 was introduced by revision 165317 [Chr12b] and revision 144546 [Fir13]
for Chromium and Firefox respectively. As such, to identify all plausible bug
lifecycles we are required to evaluate the revision range between these revisions
and the most recent browser version (version 109 for both Chromium and
Firefox).

Our search strategy is composed of two phases:

General sweep. First, we conduct a broad survey over the entire range, and
to be comprehensive, this phase covers at least multiple revisions per release
version. This way, we can already identify confined ranges in which a bug was
introduced or fixed. Furthermore, in contrast to the other bisection tools, this
allows us to possibly find additional introducing and fixing revision couples,
required for a complete lifecycle analysis.

Precise pinpointing. In the second phase, we use binary search to determine
the exact revision that introduced or fixed a bug. In several cases, the publicly
provided revision binaries are not sufficient to pinpoint this revision. However,
if the revision range has been sufficiently narrowed down, it is straightforward
to manually identify this revision. In the other case, we build new revision
binaries and repeat the evaluation within the refined range. While starting
the build script and restarting the evaluation are manual tasks, this could be
automated in the future. For every pinpointed revision, we ensured its validity
by verifying logical constraints (e.g. introducing revisions are strictly older than
their associated bug report).

METHODOLOGY 59

Revision number

Reproduced

Not
reproduced

General sweep

Precise pinpointing

Figure 3.5: Example of the revision evaluation process.

Figure 3.5 depicts an example of evaluation output over a predefined range.
Here, the general sweep (blue dots) reveals that the bug is reproducible in
the first subrange of revisions, and that although eventually fixed, the bug is
reintroduced at a later point. In the second phase, precise pinpointing (green
rods) reveals more accurately where the introductions and fixes occurred.

Unfortunately, the Chromium repository does not include JavaScript engine
source code, nor web engine source code in earlier repository versions. Because
these are hosted in separate repositories, our framework would merely pinpoint
affected revisions as rollouts (i.e. a set of engine revisions). In order to identify
individual engine revisions, we would have to build a single browser binary
multiple times, sequentially changing the embedded engine revision. This was
not deemed feasible, and as such, pinpointing within engine rollouts is covered
manually.

Dynamic evaluation

Although browser automation libraries like Selenium are prevalent, they often
do not provide support for outdated, older browser versions. Fortunately, our
use of the command line interface (CLI) for instructing browsers gives us the
advantage of evaluating any browser binary.

To ensure a clean and consistent environment for each experiment, we create
and select a fresh browser profile using the appropriate CLI flags. The selected
profile is maintained during the experiment to simulate visits using the same
browser instance. This approach also enables us to propagate desired settings,
such as setting a proxy, or to disable interfering features, such as Firefox’s
built-in tracking protection.

60 A BUG’S LIFE

Functionality git bisect C:bisect-builds.py F:autobisect BugHog
Automated #
No checkout building #
Concurrency # # #
Dependency handling # # #
PoC user interaction # # #

Table 3.1: Overview of bisection frameworks in terms of supported functionality.

Advantages and limitations

In Section 3.2.1, we discussed various tools available for bisecting bugs through
dynamic evaluation. An overview of the supported functionality for each existing
bisection tool, including BugHog, is presented in Table 3.1.

Among the tools mentioned, only Chromium’s bisect-builds.py script
requires manual input from the developer to determine if a bug is reproduced.
While this allows for the evaluation of bugs that involve user interaction, it also
significantly increases the evaluation time. In contrast, the other tools automate
the process entirely.

However, BugHog offers several advantages compared to the other tools. One
notable feature is the ability to run evaluations concurrently, which accelerates
the revision pinpointing process. This feature proves particularly valuable
when conducting a comprehensive historical analysis of bug reproducibility or
evaluating a large number of bugs, as was necessary for our study.

Additionally, BugHog leverages containers to manage external dependencies,
enabling the execution of even older browser versions. As such, it supports the
evaluation of Chromium and Firefox dating back to 2012, while the other tools
can only handle binaries up until 2019 before running into dependency issues
(with the exception of Firefox binaries for Windows, which have fewer external
dependencies).

Finally, BugHog is developed within Linux containers, making it compatible
with any operating system that supports Docker. This cross-platform capability
further enhances the accessibility and usability of BugHog.

3.3.3 Analysis

To conduct our analysis, we used an automated scraper to collect information
from bug reports and code revisions obtained from the aforementioned public
bug tracking platforms. Additionally, to enhance the depth of our analysis,

RESULTS 61

Group Label Regression
Policy introduction Introduce CSP #

Fix

Fix affected CSP bug
Fix other CSP bug
Fix unrelated security bug
Fix non-security bug

Enable feature

Enable affected CSP feature #
Enable CSP feature #
Enable security feature #
Enable non-security feature #

Update feature
Update CSP feature
Update security feature
Update non-security feature

Design choice
Design revision of CSP
Design revision of other security policy
Non-security design revision

Table 3.2: Overview of all revision intentions, where the Regression column
indicates whether the associated bug introducing revision would be considered
a regression.

we conducted manual inspections of relevant sections of the source code. The
visualizations and statistics used in Section 4.5 were generated by automated
scripts, which can be re-used for other bug studies.

To better understand the purpose of code changes, each revision was manually
annotated with a label indicating its intended purpose. All labels are listed
in Table 3.2, where the last column indicates whether a label is considered a
regression if its intent is linked to a bug introducing revision. The labeling was
done by two experts and evaluated with a Cohen’s Kappa agreement score of
0.81, with any remaining disagreements resolved through discussion. We refer
to Appendix B.3 for a detailed description of each label, and further details on
the labeling methodology.

3.4 Results

In this section, we provide a detailed analysis that relies on the diverse metadata
linked to introducing and fixing revisions, as well as bug reports.

62 A BUG’S LIFE

(a) Duration between bug introduction and report.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Chromium
Firefox

Time between introduction and report (days)

Fr
ac

tio
n

of
 b

ug
s

(b) Duration between bug report and fix.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Chromium
Firefox

Time between report and fix (days)

Fr
ac

tio
n

of
 b

ug
s

Figure 3.6: CDFs of the duration between bug introduction and report, and
report and fix.

3.4.1 Bug lifecycle

To shed light on the duration that CSP bugs stay undiscovered, we calculated the
cumulative distribution function (CDF) of the duration between the introduction
and reporting of the collected CSP bugs for each browser (Figure 3.6a).
Interestingly, Chromium bugs seem to live longer before they are reported,
compared to Firefox. For Chromium the median duration between the
introduction and report is 2.9 years, whereas this is 1.2 years for Firefox.
Note that Chromium has enabled CSP support since November 2012, whereas
Firefox only enabled it since May 2013.

Figure 3.6b shows the CDF of the duration between the first report and its
subsequent effective fix.13 For Chromium the median duration is 44 days, which
is slightly lower than the 52 days it takes Firefox to land a fix.

13Two bugs have been excluded because they were not fixed at the time of writing.

RESULTS 63

(a) Foundational bugs.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

Reported bugs
Fixing revisions

C
ou
nt

Year since CSP introduction

(b) Non-foundational bugs.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

Reported bugs
Fixing revisions

C
ou
nt

Year since CSP introduction

Figure 3.7: Number of bugs and associated fixing revisions for each year since
the introduction of CSP.

When we look at the number of bug reports and fixing revisions for foundational
bugs, i.e. bugs that were present since the introduction of CSP, over the ten
years since CSP was introduced, we observe a downward trend (Figure 3.7a).
Still, it should be noted that part of this downward trend in the last three years
can be attributed to the fact that not all discovered bugs are publicly disclosed
yet.

However, inspecting the same bar chart for non-foundational bugs, i.e. bugs
introduced after the introduction of CSP, a far less apparent downward trend
can be found (Figure 3.7b). Moreover, the last three years show a consistently
higher number of both reports and fixing revisions in comparison to our dataset
of foundational bugs. Indeed, when inspecting the number of introducing
revisions for non-foundational bugs (Figure 3.8), it strengthens the conclusion
that the number of non-foundational bugs does not necessarily decrease. Note
that we did not find any introducing revisions for year eight and nine, since
these reports are most likely not public yet.

These findings suggest that CSP as a policy has not yet reached maturity; there
is no indication of a decrease in the amount of new bug introductions. Upon
closer examination, the most prevalent root causes of non-foundational bug

64 A BUG’S LIFE

0 1 2 3 4 5 6 7
0

2

4

6

8

10

Years since CSP introduction

C
ou

nt

Figure 3.8: Number of non-foundational bug introductions for each year since
the introduction of CSP.

introductions appear to be the fixing of (security) bugs (27.2%) and adding new
(security) functionality (48%). Interestingly, the fixing of CSP security bugs in
particular caused 21% of the non-foundational bugs.

Presumably this conveys that web browser development follows trends similar
to those of more general software development. As suggested by previous work,
software matures regarding foundational bugs over time [OS06], while this is
not necessarily the case regarding non-foundational bugs [Ale+20; Res05].

Finding 1. Following the trend of general software development,
foundational bugs affecting CSP are most likely to diminish over time.
In contrast, non-foundational bugs, which typically originate with the
introduction of new functionality or as a byproduct of mitigating other
bugs, are likely to remain occurring.

Our cross-browser evaluation demonstrates that of all 75 unique bugs, 14
(19%) are reproducible in both Chromium and Firefox at some point in their
development history. While in general both browsers provide very similar
functionality, they mainly face unique bugs throughout their history, which
could be attributed to the difference in architecture and implementational flaws.

The lifecycles of shared bugs are shown in the Gantt chart of Figure 3.9, where
the presence of a bug identifier on the y-axis indicates whether a bug report
was found for the associated browser. The vertical lines indicate at what time
the associated bug report was filed, if present. In eight cases, a specific bug
could be reproduced in both browsers whereas there was only a report made to
a single browser vendor. In these cases, even the revision in which the bug was
fixed did not refer to a report describing the bug, so presumably no issue was
ever filed and the bug was introduced and fixed unbeknownst to the developers.

RESULTS 65

We also find that in seven cases the bug was reported for one browser during
or before the vulnerable period of the other browser. Although both browsers
share WPT as a common test suite, this result demonstrates a remaining lack
of effective threat vector sharing between the two vendors.

To further explore the prevalence of cross-browser bugs, we examined whether
any of these bugs were reproducible in WebKit by evaluating the most recent
Safari release (16.2). Here, four Chromium bugs could be reproduced, all of
which had been publicly disclosed for over a year at the time of writing, with the
oldest disclosure dating from May 2017. Only two of these bug reports linked to
a revision in which regression tests were added to WPT, and one other bug was
not fixed yet at the time of writing. This further supports our finding that the
current level of threat vector sharing between browser vendors is unsatisfactory.
All bugs have been responsibly disclosed, of which three have been fixed and one
is not considered a bug by Safari developers. Although Chromium developers
consider the latter issue to be of medium severity, it remains unresolved in their
codebase as well.

Finding 2. While browsers have distinct architectures, and thus
face unique bugs, a considerable number of CSP bugs occur in multiple
browsers. We argue that a more effective threat vector sharing strategy
can reduce bug lifetimes or even completely avert them.

We observe that of all shared bugs depicted in Figure 3.9, eight are foundational
in Chromium, in contrast to only four in Firefox. This indicates that
Firefox’s introduction of CSP was more comprehensive and sound. However,
five of Chromium’s foundational bugs eventually appeared as regressions in
Firefox. This highlights that even if foundational bugs are avoided through a
comprehensive policy introduction, these particular bugs are still prone to being
introduced as a future regression. Moreover, this underscores the importance
of including all shared security tests from all other browser vendors, even if
initially not affected by a bug.

3.4.2 Bug introduction

In this section, we study the root causes of bugs by analyzing the introducing
revisions. We examine the revisions from three angles: their intent, their
context (i.e., which aspect of CSP is impacted and how it is bypassed) and their
associated source code sections.

66 A BUG’S LIFE

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Chromium
Firefox

Time

1441468

1416045

1248289

1180759

990581

971231

932892

740615

696806

682673

579801

534570

482558

358471

|
|

|
|

|
|

|
|1397308 |

|
|

|1208559 |
|1086999 |

|
|1322111 |

Figure 3.9: Gantt chart of cross-browser bug lifecycles that affected both
Chromium and Firefox.

Figure 3.10 shows the intention prevalence for revisions that introduced a CSP
bug. All revisions introduced a bug a total of 97 times, as some revisions
introduced multiple bugs and several bugs regressed after a fix. For both
Chromium and Firefox most bugs (23 and 13 respectively) were introduced
with the shipping of CSP, indicating that the implementation of CSP at the
time was not sufficiently comprehensive. Similarly, enabling a new CSP feature
(e.g. shipping a new directive) allowed for various bypasses as well (eight for
Chromium, five for Firefox), reinforcing the idea that the introduction or
extension of the policy is prone to lack of comprehensiveness.

Finding 3. Approximately half of the bugs affecting CSP reported
in the ten years following its introduction were present since the initial
shipping of the security feature.

Revision intent

Of all non-foundational revisions, seven revisions introduced multiple bugs;
six revisions introduced two bugs and one even introduced six. For all but
one, modifications to CSP configuration logic (i.e. policy parsing, feature or
directive introduction) were identified as the bug root cause, indicating that

RESULTS 67

0 10 20 30

Update related CSP feature

Fix unrelated security bug

Design revision of other security policy

Non-security design revision

Enable affected CSP feature

Fix non-security bug

Update affected CSP feature

Design revision of CSP

Enable non-security feature

Fix other CSP bug

Enable CSP feature

Introduce CSP

Chromium
Firefox

Number of introduced bugs

R
ev

is
io

n
in

te
nt

io
n

Figure 3.10: Intentions of revisions that introduced a CSP bug.

updating CSP configuration logic bears more risk to introducing multiple bugs
in comparison to modifying enforcement logic. The revision causing six bugs was
applied in an attempt to mitigate several bugs through a design revision of CSP.
Here, an inadequate CSP inheritance upon navigating to a new context was
reported, which could be abused by an attacker to inject a script.14 Although
the revision effectively mitigated the reported bugs, it introduced new bugs
where an inadequate inheritance of CSP was again the root cause.

Similarly, we find that twelve bugs, five for Chromium and seven for Firefox,
were introduced as a result of fixing a CSP-related bug. This clearly indicates
that even the smallest changes that are made to the enforcement of CSP may
cause other, independent issues to arise.

Finding 4. The implementation of CSP is very brittle. Especially
changes to the core functionality and configuration logic are likely to
cause new bugs. Hence, fixes for existing policy bugs are also likely to
introduce new issues.

14The PoCs all leveraged navigation to an attacker-constructed blob Universal Resource
Identifier (URI) and navigation to a new window where afterwards window.document.write()
was used to inject a script.

68 A BUG’S LIFE

(a) Affected CSP directives.

sc
rip

t-s
rc

m
ul
tip

le

re
po

rt-
ur

i

sa
nd

bo
x

fo
rm

-a
ct
io
n

st
yl
e-

sr
c

co
nn

ec
t-s

rc

fra
m

e-
an

ce
st
or

s

im
g-

sr
c

ob
je
ct
-s

rc

re
fe

rre
r

se
cu

rit
yp

ol
ic
yv

io
la
tio

n

up
gr

ad
e-

in
se

cu
re

-r.

Directives

0

5

10

15

20

25

C
o

u
nt

(b) Bypassing web mechanisms.

C
SP lo

gi
c
is
su

e

ifr
am

e

w
in
do

w.o
pe

n
bl
ob

ob
je
ct

re
po

rt-
ur

i a

se
rv

ic
e-

w
or

ke
r

ba
se

fo
rm

lin
k-

pr
el
oa

d

m
ul
tip

ar
t-h

ttp
-h

ea
de

r

se
cu

rit
yp

ol
ic
yv

io
la
tio

n

Bypassing features

0

2

4

6

8

10

C
ou

nt

Figure 3.11: Distribution of affected CSP directives and most prevalent
bypassing web mechanisms.

Revision context

For every bug, we analyzed which CSP functionality was affected by the bug
(Figure 3.11a) and what web mechanism or feature facilitated the bypass
(Figure 3.11b). Since we cannot assume that PoCs list all bypassed directives,
we reproduced multiple versions of each unique bug to find out whether a single
specific src directive or multiple src directives were affected. Interestingly,
24 bugs (32%) bypass only the script-src directive, and 23 (31%) bypass
more than one src directive. Here, CSP’s essential and critical responsibility
of blocking inline scripts and eval were bypassed in five and four instances

RESULTS 69

respectively. We argue that script-src’s complexity, given the various
keywords that it supports (e.g. nonce, strict-dynamic, sandbox), contributes
to its error-prone implementation.

Most bypasses are caused by CSP logic issues that are not directly related to a
specific web mechanism (e.g. incorrect policy parsing, logic errors). Interestingly,
the iframe, window.open, blob and object mechanisms are most prevalent
and account for 9 (12%), 7 (9%), 6 (8%) and 4 (5%) bypasses respectively. These
mechanisms are all related to creating and navigating to new browsing contexts.
Deeper analysis shows that 14 of 23 bugs affecting multiple CSP directives were
caused due to a bypass related to navigation. This shows that the complexity
of handling policy inheritance between multiple browsing contexts not only
induces error-prone code, but its issues affect a larger surface area of the policy
language as well.

Finding 5. The complex implementation of policy inheritance between
browsing contexts is not only prone to various bugs, but also increases
the likelihood of errors serving as bypasses for multiple directives.

Source code

By examining the source code in more detail, we notice that the enforcement of
CSP for content control (Figure 3.3) is less centralized compared to other use
cases. In this case, specific sections of code dedicated to different mechanisms
are responsible for performing CSP checks. For example, mechanisms such as
<base>, <a>’s ping attribute, favicon fetching, form submission, and Workers
require conditional CSP checks in addition to the general resource fetching check.
Conversely, the functionality scope for TLS enforcement, framing control, and
referrer handling is much narrower, resulting in fewer detached CSP checks. For
instance, we only found separate checks for form submission and WebSockets
to ensure CSP compliance in both browsers regarding TLS enforcement.

The bugs resulting from missing enforcement in CSP tend to have relatively
simple PoCs, wherein a single bypassing web mechanism is sufficient for the
exploit. This trend is particularly notable in cases involving non-active content
control, where nearly half of the bugs are attributed to missing enforcement
and are generally classified as low severity. Within the active content control
mitigations, nonce, sandbox, and inline scripts are most affected, where severity
is typically somewhat higher.

70 A BUG’S LIFE

Finding 6. The fragmented enforcement logic of CSP increases the
likelihood of oversights, which could even lead to straightforward policy
bypasses.

As depicted in Figure 3.11a, the majority of CSP bugs circumvent the
script-src directive, which is a crucial component of active content control.
Here, 12 out of 23 bugs related to script-src origin enforcement are caused by
inheritance issues. Keywords of script-src such as strict-dynamic, nonce,
and sandbox are less affected. Bypass techniques often exploit multiple browsing
contexts, resulting in more intricate exploits with more impact compared to
those arising from enforcement oversights.

Remarkably, nearly all inheritance-related issues affected Chromium (20
out of 22), while only four affected Firefox.15 This disparity implies that
Firefox’s inheritance logic has been considerably more robust compared to
that of Chromium. However, Chromium developers undertook a considerable
effort centralizing inheritance logic by incorporating CSP in the Policy
Container [Chr20b], resolving seven inheritance-related issues simultaneously.
As far as we can tell from our dataset, no new inheritance issues have been
introduced since. Presumably, Firefox’s inheritance logic was already more
centralized at an earlier stage [Mozd].

Finding 7. Centralizing inheritance logic is an effective approach to
mitigate inheritance-related bugs. Additionally, the observed disparity
between browsers underscores the correlation between bugs and the
underlying architecture.

In our analysis, we encountered three bugs in Firefox, where the introduction
of new CSP functionality inadvertently weakened the security of existing
features, while no such bugs were found in Chromium. For instance, use
of the strict-dynamic keyword would allow the execution of event listeners,
even when inline scripts should have been blocked.

Moreover, a total of five bugs for Firefox and Chromium were attributed to
factors that fall beyond the scope of CSP functionality. In Firefox, an accessible
browser resource that was intentionally exempt from CSP could be abused to
execute an injected script when strict-dynamic is included in the employed
policy. In Chromium, an HTML parsing issue allowed the theft of a nonce from
a benign script, allowing the execution of injected code. In general, these bugs

15Two issues affected both browsers.

RESULTS 71

were caused by external browser functionality – unrelated to CSP functionality
– that either act as a bypass or undermine correct policy delivery.

3.4.3 Bug reporting

In an effort to allow bug reports to be more easily queried, additional information
is attached in the form of labels. While the Chromium platform utilizes the
highly specific label Blink>SecurityFeatures>ContentSecurityPolicy label,
the Firefox platform does not dedicate a label specifically to CSP-related issues.
Among the Chromium bug reports, 33 out of 58 are not annotated with the
aforementioned label. Of those, three do not contain any variation of the “CSP”
or “Content Security Policy” strings in their title. Similarly, one of the 24
Firefox report titles does not contain a variation of these strings. This absence
or inconsistent use of CSP-specific labels makes it more difficult for developers
to identify similar or related issues.

Bug tracking platforms are often integrated with their respective source
code repositories; for instance, when a bug ID is mentioned in a revision
message, this revision will be automatically linked within the bug report as well.
Correspondingly, this aids developers in keeping track of all revisions relevant
to a certain report. To this end, we investigated how thoroughly associated
revisions are linked to a bug report, regarding introducing and fixing revisions.
If more than one bug report is associated with a particular bug (e.g. duplicate
reports), we consider a revision linked if it is mentioned by at least one report.
We found very similar results for Chromium and Firefox; bug introductions were
mentioned for only 4% and 7% of bugs, while fixing revisions were mentioned
in 87% and 86% of the cases, respectively.

Since metadata provided in reports lies at the base of understanding the
described bug for both developers and researchers, we argue that more effort
should be directed at providing consistent and comprehensive information.
Furthermore, prior work is known to rely on similar metadata, and as such, this
could provide for more accurate evidence [Asa+12; Bra+22b; ŚZZ05; Xia+20;
Yin+11]. We believe that our framework could be a first step in this process to
automatically identify the bug-introducing revision.

Finding 8. CSP bug reports are often incomplete or labeled
inconsistently, which complicates effective querying by both developers
and researchers.

72 A BUG’S LIFE

0 20 40 60

Non-security design revision

Enable CSP feature

Disable non-security feature

Fix non-security bug

Fix other CSP bug

Design revision of CSP

Fix affected CSP bug

Chromium
Firefox

Number of fixed bugs

R
ev

is
io

n
in

te
nt

io
n

Figure 3.12: Intentions of revisions that fixed a CSP bug.

3.4.4 Bug fixing

The prevalence of intention labels for all fixing revisions is depicted in Figure 3.12.
In total, all fixing revisions resolved a bug 95 times; this is less than the amount
of introducing revisions because two bugs are not fixed at the time of writing.
Clearly, with 58 revisions (61%), most bug fixes are intentional, whereas 12
(13%) are intended as a fix for another bug.

Of course, in the latter case developers could still be aware that a particular
revision – intended for another bug – fixes a second one as a byproduct. As such,
it is considered best practice to link the fixing revision to the bug report of the
second bug as well, for transparency purposes. For all reported bugs resolved
through the fixing revision of another bug, developers had only correctly linked
the fixing revision for a single bug, while in five other cases any link to the
fixing revision was missing.

Additionally, we identified two Chromium bugs and one Firefox bug that were
made public before an effective fix was landed. Notably, the Firefox bug persisted
in Firefox’s most recent release version, prompting us to report the issue, after
which it was ultimately fixed. All three issues left their respective browser
exposed for at least one year after public disclosure. The reasons behind these
premature public disclosures are very divergent:

Chromium bug 610441. The employed regression test leveraged only the <meta>
tag to enforce CSP, while the bug could still bypass CSP enforcement through
the response header.

Chromium bug 740615. An effective fix was reverted 26 hours later due to
causing issues with the Google Docs service. This was not reflected in the bug
report, and consequently, the report remained labeled as fixed.

DISCUSSION 73

Firefox bug 1460538. The regression tests were run on non-packaged builds,
on which the applied fix was successful. However, the issue still persisted in
packaged builds, unbeknownst to the developers.

Finding 9. Due to a variety of reasons (e.g. incorrect test cases,
unadvertised rollbacks, or misrepresenting test builds), bugs may be
incorrectly marked as fixed, leading to their premature public disclosure.

3.5 Discussion

Backed by our findings, we argue that CSP implementation flaws increase the
risk of bug introductions, whilst bug handling flaws increase the time frame
of insecurity. In this section, we elaborate on the underlying issues, propose
potential remedies and explore avenues for future research.

3.5.1 CSP implementation flaws

Our data suggests that non-foundational CSP bugs, caused by CSP-related and
unrelated revisions, are not decreasing with time. Due to the dynamic nature
of the Web, continuous occurrence of such revisions is inevitable.

In parallel, the evolution of CSP from a simple allowlist to a complex policy
language capable of enforcing a wide range of security policies has introduced
numerous new functionalities, including additional directives and keywords.
Our analysis indicates that these extensions seldom compromise the security of
existing CSP directives. However, it is worth mentioning that all three instances
could have been mitigated through a more comprehensive testing strategy,
duplicating existing regression tests to incorporate the new CSP functionality.
Conversely, the most prevalent cause of bugs stems from new browser features
and CSP functionalities that lack robustness upon their initial implementation,
as well as unintended side effects resulting from CSP bug fixes.

Among the issues related to CSP’s complexity, those concerning inheritance are
most prominent in our dataset. Moreover, inheritance-related bugs often lead
to more severe security risks, particularly in terms of active content control,
affecting a larger area of the policy language as well. Here, Chromium was
affected most with 20 inheritance-related bugs, compared to only four in Firefox.
However, once Chromium centralized its inheritance logic, the overall robustness

74 A BUG’S LIFE

significantly improved, This highlights the substantial benefits of centralization,
warranting the same for enforcement logic, and by extension demonstrates the
importance of the browser architecture on the handling of security policies.

Furthermore, the frequency of bugs appears to be directly associated with the
responsibility surface and capabilities of bypassed CSP directives. Consequently,
the majority of bugs are linked to the script-src directive, used for active
content control, whereas other use cases, which are comparatively simpler,
exhibit minimal bugs. However, this pattern does not hold true for most
script-src keywords. The number of bugs associated with specific keywords
(i.e. nonce, strict-dynamic and sandbox) appears to be correlated with how
long that keyword has been supported, with the exception of hashes which has
a significantly lower number of bugs.

3.5.2 Improving bug handling

Our analysis identifies several shortcomings in the bug handling procedures of
browser vendors, as several could have been avoided with minimal effort.

Foremost, we show that despite significant efforts such as WPT, bugs are not
shared effectively among browser vendors. At closer inspection, we identify
several reasons for this shortcoming; in some instances, no WPT tests are created
as part of the bug fixing process. Our analysis also demonstrates that even
when foundational bugs are initially avoided, they can reappear as regressions
later, emphasizing the need for more comprehensive threat vector sharing, even
when a browser is initially considered secure.

However, WPT seems to be the only means for browser vendors to share
undisclosed bugs, but as WPT’s test suite is public, added tests become visible
to potential adversaries before the bug is fixed in other browsers. To address
this concern, we recommend exploring alternative methods for sharing sensitive
bugs among vendors. A low-effort solution would be to allow developers access
to certain parts of the bug tracking platform of other browsers. This would
make bug sharing independent of test creation and reduce the time it takes for
bug knowledge to reach other vendors.

The fact that three bug reports were disclosed publicly before a fixing revision
was implemented is particularly concerning, as it exposes end-users to potential
attack vectors for an extended time period. A more stringent bug handling
procedure would have helped prevent these incidents, especially considering that
these bugs were incorrectly marked as resolved. Additionally, our analysis has
uncovered instances where reports lack a link to the fixing revision, emphasizing
the importance of enforcing this as a mandatory step for transparency and

RELATED WORK 75

verification purposes. Furthermore, improving the accuracy of bug labels can
facilitate the identification of similar bugs and support the implementation of
stricter procedures, such as requiring a minimum of two reviewers for revisions
aiming to address a bug labeled as a security issue.

3.5.3 Future work

For future research in this area (e.g. longitudinal evaluation of other policies),
it is crucial to have complete and accurate bug reports. This would further
enhance the quality and convenience of bug report and revision scraping, on
which various related work relies. Moreover, the use of a standardized language
to describe bugs in different contexts would greatly assist the integration of
automated PoCs into various dynamic evaluation tools.

Solutions for CSP soundness specifically could lie in the field of formalization,
where CSP would be consolidated as a formal definition. Several aspects of
the Web have already been explored in a formalized context, demonstrating
its effectiveness by discovery of previously unknown bugs [Akh+10; Ban+14;
FKS16; FKS17; JTL12]. While this research direction would facilitate the sound
introduction of new CSP functionality, formalizing the Web as a whole poses
numerous significant challenges due to its dynamic nature and the complex
interplay of its mechanisms and policies.

Another approach could leverage dynamic evaluation, similar to our methodology.
However, the difficulty here lies in achieving true exhaustiveness, considering
all combinations between supported mechanisms, policies and nested browsing
contexts. While valuable efforts have been made to explore this approach [FVJ18;
HMN15; Wi+23], only limited comprehensiveness has been demonstrated.

3.6 Related work

3.6.1 Dynamic browser policy evaluation

As one of the first, Aggarwal et al. employ fuzzing to detect inconsistencies
and flaws in private browsing mode, also demonstrating the potential negative
impact of extensions and plugins [Agg+10]. Research by Schwenk et al. found
inconsistencies among browsers for the Same-Origin Policy, which could lead to
vulnerabilities [SNM17]. In that same light, browser access control incoherencies
were exposed by Singh et al., leveraging their automated evaluation framework
WebAnalyzer [Sin+10].

76 A BUG’S LIFE

Hothersall-Thomas et al. introduced BrowserAudit, a web application to
validate multiple browser security policies [HMN15]. Third-party cookie policies,
SameSite cookie policies and various anti-tracking measurements implemented
by both browsers and browser extensions were deemed inadequate by Franken
et al., employing their framework for dynamic evaluation through browser
automation [FVJ18]. Luo et al. found that mobile browsers are susceptible
to UI attacks due to insufficient protection and even demonstrate a declining
trend in security over time [Luo+17]. Luo et al. employed dynamic testing
to construct a longitudinal overview of supported browser security policies in
mobile browsers, uncovering that several widely-used browsers lack support for
crucial policies, even several years after their introduction [Luo+19]. In recent
work, Rautenstrauch et al. uncovered several new vulnerabilities through the
first systematic analysis of XS-Leaks [RPS23].

Finally, various frameworks have been developed to dynamically evaluate
the security of JavaScript engines and web engines in different contexts as
well [Din+21; FVJ21; Par+20].

3.6.2 Vulnerability studies

By examining the rate at which vulnerabilities are reported, Rescorla was
the first investigating whether software matures in terms of security [Res05].
Unfortunately, no conclusive evidence was found for this hypothesis, confirmed by
later studies as well [Ale+20; Ale+22; OS06]. However, Ozment et al. presented
statistically significant evidence that the rate of foundational vulnerability
reports does decrease over time [OS06]. Indeed, complementing this research,
Edwards et al. demonstrated that the adding of large amounts of new code
can decrease software quality and Alexopoulos et al. highlight the need for
maintaining stable branches longer in order to detect maturing behavior[Ale+20;
EC12]. Furthermore, Alexopoulos et al. suggest that more expressive security
metrics can greatly help us understand the vulnerability lifecycles.

Regarding browser development, Braz et al. uncover several root causes of
regression vulnerabilities such as the complexity of browser interactions required
for certain regression tests [Bra+22b]. Zaman et al. and Munauah et al.
underline the considerable differences between non-security and security bugs,
and consequently motivate the need for this distinction in research [Mun+17;
ZAH11]. Research of di Biase et al. demonstrated the importance of code
review and argues that more security issues are found in case more than two
reviewers are involved, as opposed to the two-reviewer policy of Chromium at the
time [BBB16]. In addition, further research indicates that security checklists do
not significantly improve vulnerability detection and the relative order in which

CONCLUSION 77

files are reviewed affects the probability for finding security issues [Bra+22a;
Fre+22].

3.6.3 Content Security Policy

CSP has been the subject of various research projects, both with the focus on
validating CSP implementations and on measuring CSP employment in the wild.
To begin with, the aforementioned studies of Hothersall-Thomas et al. and Luo
et al. investigated the CSP implementations of desktop and mobile browsers,
respectively leveraging their automated frameworks [HMN15; Luo+19]. Van
Acker et al. demonstrated how attackers could bypass strict CSP enforcement
by abusing DNS and resource prefetching in major browsers [VHS16]. Other
bypasses were pointed out by Somè et al., where incompatibility issues between
the Same-Origin Policy and CSP would allow attackers to execute otherwise
blocked scripts [SBR17].

The first study to identify and set out the challenges of CSP adoption was
conducted by Weissbacher et al. [WLR14]. Based on their longitudinal study,
they uncover various reasons behind the slow adoption rate and ineffective
deployments of CSP, proposing potential remedies as well [Wei+16]. Calzavara
et al. identified various issues with CSP deployment in the wild, such as liberal
src expressions, use of inline scripts and underutilization of CSP’s monitoring
facilities [CRB16; CRB18]. Roth et al. brought to light the hurdles developers
are facing when implementing a comprehensive policy[Rot+]. Calzavara et
al. exposed how inconsistencies among the enforced CSP policies in browsers
can lead to various gaps in clickjacking defenses of websites [Cal+20]. More
recently, Stolz et al. showed that the use of the unsafe-hashes directive does
not necessarily lead to more secure event handles, and argue that although the
introduction of the directive is a step in the right direction, web developers
should be advised to avoid inline scripts [SRS22]. Finally, Wi et al. uncovered
29 new CSP bypasses that lead to unauthorized script execution, by leveraging
the first differential testing framework based on inconsistencies between browser
implementations.

3.7 Conclusion

In this work, we presented BugHog, an automated framework to accurately
identify introducing and fixing code revisions of browser security policy bugs.
Leveraging this framework, we conducted a longitudinal analysis on CSP, one

78 A BUG’S LIFE

of the most extensive and important browser policies on the Web, mapping the
complete lifecycle of 75 bugs.

Our results highlight multiple flaws in current bug prevention and handling
practices, which lead to the premature public disclosure of unfixed vulnerabilities,
and an avoidable lifetime of vulnerabilities due to inadequate threat vector
sharing between vendors. We recommend that vendors explore alternative
channels for sharing sensitive bug information and adopt more rigorous bug
handling procedures. Our framework can aid in the effort to improve the
compilation of more consistent and complete bug information, essential for a
better understanding of their root causes. As such, we intend to open-source
BugHog, which we plan to extend to evaluate other policies as well in future
work.

4
Reading Between the Lines

An Extensive Evaluation of
the Security and Privacy
Implications of EPUB
Reading Systems

Yo why y’all playing checkers on a
chess set?

– D’Angelo Barksdale [SBM95]
(The Wire, 2002)

This chapter was previously published as:

G. Franken, T. Van Goethem, and W. Joosen. “Reading Between the
Lines: An Extensive Evaluation of the Security and Privacy Implications
of EPUB Reading Systems”. In: 2021 IEEE Symposium on Security and
Privacy (SP). 2021, pp. 1730–1747. doi: 10.1109/SP40001.2021.00015

In the preceding two chapters, we have focused on policy enforcement within web
browsers and the many complexities of doing it soundly and comprehensively. In
this chapter, we take a step back and explore whether the same challenges apply
to native applications that employ browser engines. To this end, we conducted
the first comprehensive evaluation of the security and privacy implications of

79

https://doi.org/10.1109/SP40001.2021.00015

80 READING BETWEEN THE LINES

a specific class of native applications that leverage browser engines: EPUB
reading systems.

As previously discussed, automating browser evaluation is relatively straight-
forward due to the consistent and standardized methods of instruction. Yet,
this advantage is not shared by EPUB reading systems, as they do not offer
support for automation and command line-based instruction. On top of this,
all reading systems employ their own unique user interface and are often only
available for one platform. Despite these hurdles, we managed to create a
semi-automated testbed of multiple EPUBs that, upon loading by a reading
system, runs experiments and displays the outcome using the application’s
renderer. As such, we were able to evaluate 97 EPUB reading systems, covering
seven platforms and five physical reading devices.

Our findings revealed several critical vulnerabilities, some of which would allow
an adversary to access local files. As part of our responsible disclosure, we
reached out to the vendors of 37 affected reading systems, including widely used
applications like Adobe Digital Editions, Apple Books and Amazon Kindle. As
a result of these efforts, numerous issues have been addressed and several CVEs
have been assigned.1 Additionally, our investigation has uncovered several
underlying root causes of these issues. These include the misconfiguration
security-sensitive settings, such as permitting all loaded EPUBs unrestricted
access to the local file system and the inheritance of engine functionality, such
as the ability to launch external applications through custom URI schemes.
As part of a real-world analysis, we even demonstrated that it is possible to
distribute malicious EPUBs through the official web stores of popular reading
systems, including Amazon Kindle, Apple Books and Rakuten Kobo.2

In addition to implementation issues, we also identified several shortcomings in
the EPUB specification. For instance, the specification previously allowed
reading systems to grant EPUBs access to both local and remote files,
potentially creating vulnerabilities for attackers to exploit and compromise
personal information. Furthermore, the specification did not explicitly address
all potential attack vectors. Fortunately, our findings and suggestions for
improvement were taken into account by W3C. Consequently, several significant
enhancements have been integrated into the next iteration of the EPUB standard,
EPUB 3.3 [GCH23]. One notable improvement is the introduction of a strict
requirement that prevents a loaded EPUB from referencing file:// URLs,
effectively blocking access to the local file system. Additionally, the specification

1CVE-2020-3798, CVE-2019-8789 and CVE-2019-8774.
2In the context of this experiment, paper co-author Tom and I made our debut in the

realm of contemporary art books with our publication, “Not for Sale: A Timeless Piece of
Art”. However, the book was retracted from all stores following the experiment’s conclusion
due to lack of artistic value. Nonetheless, a digital copy remains available upon request.

INTRODUCTION 81

now recommends that user consent should be a prerequisite for allowing a
loaded EPUB to access the network or to open external applications. In support
of these improvements, we have integrated various segments of our test suite
into the official W3C test suite, which serves as the benchmark for testing the
compliance of EPUB reading systems.

The presentation preview for our talk at the IEEE Security & Privacy Symposium
was awarded with the Best Video Award.3

4.1 Introduction

In the last decade, digital books have gained significantly in popularity, and
experts argue they are here to stay [PwC10; Wis13]. Today, almost every newly
published book or magazine is made available in a digital format, in addition to
their physical copy. EPUB e-book creation is considered fairly straightforward,
which combined with the possibility to publish without any vendor interposition,
explains in particular its popularity among self-publishing authors and within
open license communities such as Project Gutenberg4. EPUBs primarily consist
of Extensible HyperText Markup Language (XHTML) documents and CSS
stylesheets, bearing close resemblance to web pages. Consequently, browser
engines are often employed by reading systems to render EPUB content. Next
to static content, the EPUB standard also allows for media such as audio or
video, and dynamic content leveraging JavaScript.

Because EPUB reading systems are closely related to web browsers, they
are prone to similar security and privacy issues. A malicious EPUB could
leverage the reading system’s capabilities to mount attacks against the user,
much like the dynamics between a malicious website and a browser. For
instance, since the introduction of EPUB3, several blogs and articles have
voiced concern about the capabilities associated with supporting JavaScript
in EPUB reading systems [Bal12a; Bal12b; Eri13; Jun17; Nat13]. The EPUB
specification acknowledges these concerns by dedicating one of its sections
to security recommendations for EPUB reading system developers [CG19].
However, these recommendations are very lenient and lack strict enforcement.

The EPUB specification defines a large number of (optional) capabilities, several
of which are questionable from a security perspective, such as access to the
local filesystem, especially when considered in combination with access to
remote endpoints. Consequently, since most EPUB reading systems are not
well-documented, this makes it difficult for the user to assess what privileges the

3https://www.youtube.com/watch?v=GDL6KWOn8Ic
4https://www.gutenberg.org/

https://www.youtube.com/watch?v=GDL6KWOn8Ic
https://www.gutenberg.org/

82 READING BETWEEN THE LINES

reading system provides to an opened EPUB. Moreover, there is no indication
whether a reading system is compliant to the EPUB specification, nor are we
aware of any study evaluating their capabilities and compliance.

In this chapter, we present the first extensive evaluation of EPUB reading
systems, addressing their capabilities, compliance with the EPUB specification,
and security and privacy implications. To this end, we crafted an extensive
testbed that covers a wide range of the threat surface, consisting of EPUBs which
are loaded in EPUB reading systems to perform a semi-automated evaluation.
As soon as such an EPUB is opened by a reading system, the embedded
experiments are executed, after which the resulting data is rendered or sent to
a server. This way, we evaluated 97 of the most popular EPUB reading systems,
covering seven different platforms and five physical e-reader devices. Our
evaluation uncovered that almost all reading systems that execute embedded
JavaScript do not fully respect the specification’s security recommendations,
of which 16 can be abused by malicious EPUBs to leak information about the
local filesystem. We reached out to all vendors in order to report the identified
issues.

Moreover, to complement our semi-automated evaluation, we manually inspected
three widely used EPUB reading systems for implementational flaws, revealing
several severe security vulnerabilities. We discovered a universal XSS affecting
two browser extensions (≈300,000 browser installations), and the ability to leak
arbitrary files as soon as a malicious EPUB is opened on a Kindle (the most
widely used physical e-reader [DG19]). These findings indicate that the results
of our semi-automated evaluation should be considered as a lower bound, and
that in fact EPUB reading systems may face even more security issues that
are implementation-specific. We argue that by limiting the capabilities of the
reader application and the employed rendering engine to a minimum, the threat
surface can be significantly reduced. For instance, iOS reading systems can only
access files within the application by design, and thus none could be abused to
leak sensitive files. Furthermore, we explored the presence of real-world abuse
by analyzing more than 9,000 EPUBs obtained from five online e-book stores
and two file-sharing platforms. We did not find any evidence of ongoing abuse,
allowing EPUB reading system developers to adopt adequate security measures
before users are actively being exploited. Finally, we show that four out of
six evaluated self-publishing EPUB services do not adequately vet submitted
manuscripts, which could lead to the distribution of malicious EPUBs through
legitimate channels.

We make the following contributions:

BACKGROUND 83

• We developed a testbed of numerous EPUBs to assess the security and
privacy impact of various aspects of EPUB reading systems and the
rendering engine they employ.

• By applying this testbed in a semi-automated analysis, we evaluated a
total of 97 EPUB reading systems, of which 92 were freely available as
applications on desktop (Windows, macOS and Ubuntu) and mobile (iOS
and Android), or as a browser extension (Chrome and Firefox), and of
which five were physical e-reader devices.

• The result of this analysis shows that many reading applications can be
abused, either by leaking file contents, or by violating the user’s privacy
expectations.

• To explore both ongoing and potential abuse in the EPUB ecosystem, we
downloaded over 9,000 EPUBs from two torrent sites and five online e-
book stores, and assessed the vetting process of six popular self-publishing
services.

• Lastly, based on the identified issues and their root cause, we propose
to make the EPUB specification more strict. Moreover, to encourage
consumers and developers to measure the security and privacy impact of
their reading systems, we have released the EPUBs used in our evaluation
along with the source code to craft them.

4.2 Background

In May 2019, W3C issued EPUB 3.2, the most recent version of the EPUB
standard at the time of writing [GC19]. In the remainder of this chapter, we
refer to this particular version when discussing the EPUB standard, unless
specified otherwise.

4.2.1 EPUB technical standard

The EPUB standard consists of five sub-specifications, each defining comple-
mentary core features and functionality. For reasons of brevity, we will not
describe each sub-specification, instead we will discuss the standard as a whole.

The EPUB format and the internal structure of a compliant EPUB file, or
a so-called EPUB Container, are visualized in Figure 4.1. An EPUB is a
single-file container with the .epub extension, of which the included content

84 READING BETWEEN THE LINES

EPUB Container

EPUB Publication

EPUB Renditions

Navigation Document

Package Document

Publication Resources

Figure 4.1: On the left a visual representation of the EPUB format, and on the
right the internal file structure of a compliant EPUB archive.

is compressed in a ZIP archive. The mimetype file indicates the EPUB Open
Container Format (OCF) media-type, with application/epub+zip as the two-
part identifier [IAN14].

An EPUB Publication, included in the Container, must consist of at least
one Rendition, the specific rendering of the EPUB’s content. A Rendition is
represented by an EPUB Package, which consists of the Package Document
(package.opf), the Navigation Document and all Publication Resources used
to build the Rendition. The Package Document conveys various types of
information such as the title and authors of the EPUB Publication. Moreover, it
also defines the sequence in which the Content Documents are rendered, called
the spine.

Publication Resources characterize the actual content and layout of the EPUB
Rendition. The standard makes a distinction between Core Media Type
Resources and Foreign Resources. The former are resources of media types that
are deemed supported by all Reading Systems. This set of media types consists
of Content Documents (XHTML or SVG media type files), CSS stylesheets, and
various image and audio formats. The latter are resources of which support is
not mandatory and therefore require fallback mechanisms to Core Media Type
Resources, in case the Reading System does not offer support.

The Package Document is also used to assign special properties to particular
Content Documents. An interesting example is the scripted property, which

BACKGROUND 85

indicates that the referred Content Document contains executable JavaScript.
EPUB Containers are allowed to contain such Scripted Content Documents,
however, EPUB Reading Systems are not obligated to support script execution.
As such, the EPUB standard states that Scripted Content Documents should
retain their integrity when scripting support is disabled, without any loss of
information or legibility.

4.2.2 EPUB reading systems

EPUB Reading Systems are applications that interpret and render EPUB files
according to the EPUB specification. They come pre-installed on physical e-
book reading devices (e.g. e-ink readers), but are also available on smartphones,
tablets, desktop computers, and even in the form of browser extensions. Nearly
all applications are free (some with in-app advertisements) and often provide
support for various other e-book formats.

The EPUB specification dictates the minimal requirements that should be
met by an EPUB Reading System. These requirements are mostly related to
rendering and presenting the content that is the EPUB Publication. Only a
few paragraphs of the standard are dedicated to security considerations, with
special attention to providing support for scripting [CG19]. Here, Reading
System developers are provided with several attack vectors that should be
considered, and with recommendations on how to deal with security-related
issues concerning scripted content execution.

One of the recommendations states that the Reading System should behave
as if a unique domain were allocated to each Content Document, consequently
isolating documents from each other. This isolation is enforced by the Same-
Origin Policy, which dictates that one origin cannot access resources from
another. Reading Systems that allow scripting and network access should also
notify the user whether any network activity is occurring, and ideally provide
functionality for the user to disable it.

According to its specification, EPUB Reading Systems may allow an EPUB
to store persistent data (e.g. LocalStorage). This data is recommended to be
considered sensitive, and therefore this data should not be accessible by other
documents.

4.2.3 Same-Origin Policy

Modern browsers employ a wide range of policies to protect users against
malicious websites, among which the highly essential SOP [Mozk]. This policy

86 READING BETWEEN THE LINES

in particular is used to isolate documents and scripts located on different origins,
to prevent one website to perform undesirable actions on, or steal sensitive
user information from another website. Two URLs share the same origin
if their scheme, host and port are identical. For example, when the origin
https://attacker.com tries to extract information from https://bank.com,
this would be prevented by the SOP. Not only documents and scripts are
protected by the SOP, but also any information stored by the LocalStorage
API [Hic16]. Although cookies are not subjected to the SOP, they can only be
accessed by associated domains. As an extension to the SOP, websites cannot
instruct the browser to render or access files located on the user’s file system.
For example, when a website leverages an iframe to render a file by referring to
file:///etc/passwd or employs the XMLHttpRequest or Fetch API to access
its content, the browser will refuse.

4.3 Motivation

While e-books have grown to be a multi-billion dollar industry [PwC10; Wis13]
and countless EPUB reading systems are available on essentially every platform,
the reading system ecosystem has never been subjected to a comprehensive
security or privacy assessment. In the following subsections, we argue why such
an assessment is imperative.

4.3.1 Intransparency

Most EPUB reading systems rely on browser engines to render e-book content.
Over the last few years, there has been an extensive growth in the number
of features that these browser engines support, significantly increasing their
threat surface [STK17]. Scripting in e-books, which was already suggested as an
optional functionality in the 1999 Open eBook Publication Structure (OEBPS)
specification, could be used to launch a variety of attacks to circumvent the
same-origin policy, or even to attack the underlying operating system. As such,
opening an e-book could introduce the user to a plethora of attacks, which
have not been extensively explored to this date. In face of these threats, the
more recent editions of the EPUB standard now include a section on security
considerations for EPUB reading system developers.

However, we argue that these considerations lack binding requirements and
are insufficiently concrete. In that regard, even if an EPUB reading system
is compliant with the official specification, users do not have any guarantee
that their security and privacy will be safeguarded. For instance, a compliant

MOTIVATION 87

reading system might allow an EPUB to freely access the user’s file system and
send a copy of it to a remote server. Moreover, countless curated lists only
recommend reading systems based on usability features and supported e-book
formats, making it nearly impossible for users to verify whether an application
is sufficiently secure.

We argue that the more features are being added to the specification, the more
it will cripple the transparency of security and privacy factors in EPUB reading
systems as long as no clear compulsory considerations are included. However,
even when these are included, still, there is no straightforward way to verify
compliance of a reading system. This uncertainty is one of the reasons why we
deem a comprehensive evaluation of EPUB reading systems imperative. We
aim to improve this much-needed transparency by evaluating the most popular
EPUB reading systems, leveraging a semi-automated analysis. In the following
subsections, we discuss two attacker models which aim to abuse EPUB reading
system capabilities, impacting the user’s security and privacy.

4.3.2 Malicious EPUBs

Nowadays, tens of thousands of EPUBs are made available online for free,
either legally or illegally. Whereas EPUB submissions to the Gutenberg Project
are subjected to examination by volunteers [Pro], various other channels omit
third-party validation and share the EPUB as-is (e.g. torrent sites, social
media). A study of the UK government’s Intellectual Property Office finds that
approximately 17% of e-books are illegally consumed online, accounting for
around four million e-books [Int17]. As such, users may face various threats when
accessing an e-book obtained either from a publisher who does not sufficiently
sanitize or verify the published books, from a malicious website directly, or from
a file-sharing platform.

The attacker could configure the EPUB such that upon opening, a malicious
JavaScript payload is executed. Depending on the capabilities and vulnerabilities
of the reading system, the attacker could try to either extract sensitive system
files, such as the browser’s cookie store, and then send the contents of these files
to an online web server. Furthermore, if the browser engine used by the reading
system is outdated, it might contain publicly known vulnerabilities that can
then be exploited by the malicious e-book in order to compromise the system.

In an explorative experiment using Chrome and Firefox, we assessed whether a
website could automatically cause a malicious EPUB to be loaded in an installed
reading system. In both browsers (on desktop and mobile), this requires at
least one user interaction. Although a website can instruct the browser to
download an EPUB (e.g. clicking a URL through JavaScript), still one user

88 READING BETWEEN THE LINES

click is required to actually open it. However, an EPUB reading system installed
as a browser extension could intercept the download and automatically render
the EPUB.

4.3.3 Tracking EPUBs

E-books in a proprietary format are usually distributed through the associated
vendor’s online bookstore, which is often embedded within the vendor’s own
reading system (e.g. physical e-reader devices or applications). Leveraging their
own proprietary formats and reading systems, vendors are known to harvest
user data based on interactions with their reading system [Alt12; Flo14; Kas10].

Although EPUB is an open format and not affiliated to any specific vendor,
distributors of EPUBs might still be able to track users. To supplement their
recommendation system, the distributor might try to figure what other books
make up the user’s library. This can be accomplished if the user’s reading
system allows EPUBs to render local files located within the directory where
the unpacked EPUBs are stored. Then, to scan the contents of the library,
each distributed EPUB could include a list of popular EPUBs, and code to test
their presence on the system. Even when the targeted EPUB reading system
does not allow rendering local files, timing attacks can prove as a suitable
alternative. The distributor could be even more intrusive by scanning for other
information, such as installed applications and browsing history, in the same
way. Moreover, a tracking-enabled EPUB might try to associate the user with
an online browsing session, e.g. by fingerprinting the installed fonts. The EPUB
might even try to obtain an even more intrusive device fingerprint, e.g. by
detecting the presence of specific files on the system, which in most cases can
also reveal the username.

4.4 Methodology

To evaluate the potential threats posed by opening an EPUB file, we conduct
a series of experiments. In this section we describe our experimental setup
through which we test a wide variety of EPUB reading systems for different
primitives that could be used to launch attacks.

METHODOLOGY 89

Figure 4.2: Overview of our experimental design. The various EPUB files that
make up our testbed are manually loaded in the tested reading system. If
remote communication is available, the results are automatically submitted to a
web server, which will store it in the database. Alternatively, these are manually
copied from the e-book.

4.4.1 Experimental design

Our experiments aim to document the capabilities entrusted to EPUBs by the
reading systems, and to detect related security and privacy issues. Because most
reading systems are closed-source, we opt for a black-box approach, developing
a testbed of various EPUBs which, upon loading, instruct the EPUB reading
system to run embedded experiments. Because of the high variety of reading
systems, both in terms of the platform they are run on as well as the functionality
they provide and their user-interface, we deemed it infeasible to perform a fully
automated evaluation while maintaining completeness. Instead, we opted for a
semi-automated approach, where we use JavaScript code to render the results of
our experiments in the reader, or, if possible, send these to a remote web server.
As such, the manual effort is limited to copying this output from the EPUB
reader into a file that can be further evaluated by our analysis framework. An
overview of our experimental design can be found in Figure 4.2.

Supported by this setup, we aim to evaluate the presence of certain “primitives”
that are required to launch attacks. For instance, in order to leak the contents
of a file on the local file system, an attacker requires the ability to render content
from local files, execute JavaScript code, and finally send remote requests. For

90 READING BETWEEN THE LINES

every primitive functionality, our testbed uses a separate EPUB file that tests
its presence. The reason for this is that EPUB reading systems label certain
EPUBs as corrupt when these try to execute unsupported functionality. Several
experiments rely on specific functionality such as JavaScript execution; when
this functionality is not present, the associated experiments can be omitted.
The decision on which experiment to perform next is each time imposed by our
testbed protocol.

We used the official EPUB Validation Tool [W3C19] provided by W3C to
validate conformance with the standard. To accommodate all EPUB reading
systems, the embedded JavaScript uses ECMAScript 5 functionality because
the more recent ECMAScript 6 is not widely supported among reading systems.
We have publicly released all code required to construct this testbed of EPUBs.5
In the rest of this section we discuss all features that were evaluated, an overview
is depicted in Figure 4.3.

JavaScript execution

Because most reading systems do not disclose whether JavaScript is supported,
which is indeed an optional feature in the EPUB specification, this information
needs to be obtained empirically. JavaScript support might be an important
trait to the user, e.g. to support interactive EPUBs, but even more so to a
potential attacker, considering the substantially increased threat surface. That
is, through JavaScript a multitude of different APIs become available, which
could be used to request local or remote resources, or even access user media
devices (MediaDevices API [Mozj]).

We test three different ways of how JavaScript can be included in an EPUB:
(i) directly embedding code with a <script> tag in an XHTML file (inline),
(ii) reference a separate JavaScript file within the EPUB by setting the src
attribute of <script> tags (external), and (iii) reference a JavaScript file hosted
on an external web server (remote). All three approaches were evaluated by
dynamically changing the content of a visible HTML element through inline,
external or remote JavaScript code. When the content of such an element
assumed the dynamically assigned value over the original value, we could safely
assume that JavaScript was executed.

5https://github.com/DistriNet/evil-epubs

https://github.com/DistriNet/evil-epubs

METHODOLOGY 91

Inline JS

External JS

Remote JS

JavaScript
support

yes

yes

JS
support?

yes

Render
local file?

XHR Fetch

JS request
APIs

iframe file:// img file:// font-familiy
file://

DOM local
file access

Content
extraction

iframe
contentWindow

canvas
toDataURL

Leak
local files?

Remote
comm.?

DOM elements

<video> <audio>

cookieslocalStorage

Storage mechanisms

Persistent
storage?

Feature
access

MediaDevicesAPI Background
activity?

URI schemes

Can access
media dev?

Protocol
handlers?

<a href> click()

...

Browser
engine?

Figure 4.3: Overview of the different EPUB experiments. In order to assess
certain features (red) of the reading system, we used several experiments
(rectangular), both with (yellow) and without (white) JavaScript; these
experiments are grouped by category (blue).

Local file system access

The EPUB specification allows reading systems to support references to certain
types of resources on the local file system, explicitly mentioning audio, video
and fonts, but also any resource retrievable by a script [GC19]. JavaScript-
supporting reading systems that implement this optional feature may implicitly
grant every EPUB the ability to retrieve files from the user’s operating system.
Even when the SOP is enforced to prevent content leaking, as is recommended

92 READING BETWEEN THE LINES

by the specification [CG19], a malicious EPUB might still be able to gather
sensitive information such as the presence of certain files, or even the user’s
account name.

For this evaluation, we performed three sets of experiments in which the EPUB
attempts to access five types of resources: textual files (.html, .txt, .log, .bogus),
images (.png, .jpg), audio (.mp3), video (.mp4) and fonts (.ttf). In an attempt
to bypass the potentially restrictive direct access to the local file system, we do
not only refer to the resource through its absolute path (file:// protocol), but
also leverage relative symbolic links. For UNIX systems, we were able to enclose
correctly functioning symbolic links pointing to a file and folder in the ZIP
file, which is essential for embedding them in an EPUB. We did not find a way
to reproduce this on Windows. These experiments were considered successful
only when the obtained information could be leaked to a remote server (see
Experiment 4.4.1).

In the first set of experiments, the EPUB attempts to render the local user
files by simply including them by means of an iframe, img, audio or video
element, or by assigning a CSS font-family to include a font. When such
a resource is rendered, it is trivial to confirm its existence on the local file
system. For iframes and images, an observable load event is fired when the
subresource was successfully loaded. Similarly, on audio and video elements
the canplaythrough event is fired. Although no such event exists for fonts,
existence of font files can be inferred by leveraging canvas elements to check
whether the referred font has been applied to a text box.

The second set of experiments aims to determine whether the content of local
resources can be accessed through the XMLHttpRequest and Fetch API [Moz17b;
Moz17f] or by leveraging content-specific methods. For textual resources,
the EPUB tries to access the rendered content within an iframe through its
contentWindow attribute. Images, on the other hand, can be encoded in the
base64 format through the toDataURL functionality of the canvas element.
However, when reading systems use a unique domain to host the EPUB’s
content, as is recommended by the specification [CG19], the SOP disallows
access to the content of the referred resource. Again, here we can leverage
symbolic linking to make it appear as if the referred content is hosted on the
same domain.

Well-secured EPUB reading systems will prevent the EPUB from rendering
local files and leaking their content, however, we might still be able to leak the
existence of a particular file by leveraging timing attacks. This was evaluated
in an additional experiment, by measuring the time between setting the src
attribute of an image element and the firing of the onerror event, for both
a URL of an existing file and a non-existing file. In every experiment, this

METHODOLOGY 93

measurement was performed 20,000 times, alternating the sequence order of the
existing and non-existing file to reduce potential noise. When in a significant
portion of these cases the measured time was larger for the existing file than
for the non-existing file, or vice-versa, we consider a timing attack to be viable.
For all such labeled reading systems, this calculated accuracy was at least 95%,
except for two reading systems where we measured an accuracy of about 75%.
However, in all cases the accuracy can be increased by performing multiple
measurements. On MacOS and Linux, we used a filesystem in user space
(FUSE) [nrc19] in advance to determine whether the local filesystem is accessed
in an attempt to read out the file.

Remote communication

Similar to the local resource access discussed in the previous section, the EPUB
specification allows reading systems to support references to online resources
for certain resource types [GC19], implying that remote communication with
a server is possible. However, the standard also acknowledges the security
implications produced by this trait and advises reading system developers to
explicitly notify users of network traffic, and ideally, even request user consent
in advance [CG19]. Indeed, this capability is essential for relaying sensitive
information to a tracker, or for receiving instructions from an attacker.

In this experiment, we investigate whether an EPUB is able to communicate
with remote servers while it is opened by the reading system, and whether the
user is notified of the occurring network traffic. Various HTML tags can be used
to initiate HTTP requests, and in an attempt to be exhaustive we leveraged
the comprehensive collection on the HTTPLeaks GitHub repository [Cur19],
in combination with the XMLHttpRequest and Fetch API [Moz17b; Moz17f].
When any of these requests reaches the remote server, we label the EPUB
reading system as supporting remote communication. As we manually load the
crafted EPUBs in the readers, we also take note of any request for consent that
was presented to the user.

Persistent storage

In modern browsers, websites have access to various mechanisms to store data
locally, such as cookies and the LocalStorage API [Hic16]. Again, EPUB reading
systems might inherit this functionality to provide storage capabilities to EPUBs.
The EPUB specification rightfully recommends reading system developers to
treat all stored data as sensitive, preventing other documents from accessing.

94 READING BETWEEN THE LINES

In these experiments, we first determine whether the EPUB reading system
supports persistent storage through one of the two mechanisms. Since reading
systems might merely provide the API, neglecting the persistence trait, we
evaluate whether the stored information persists after closing the EPUB reading
system. To adequately validate inter-session persistence, we start an initial
session by opening the crafted EPUB. After rendering is complete, we close
the reading system, thereby ending the first session. Finally, by reopening the
same EPUB file and starting a second session, we inquire whether any cookies
or LocalStorage entries have remained.

In an additional experiment, we check compliance with the recommendation
to isolate this data from other documents. For this, we use different EPUBs
in subsequent sessions, validating whether a modification by the first EPUB is
detectable by the second.

Feature access

Modern browsers allow websites to request access to features, such as the user’s
geolocation, microphone and webcam [Bos+19; Pop16]. When such access is
requested, the browser will ask the user for consent to allow the website to access
the indicated resource. We did not find any occurrence of these mechanisms in
the EPUB specification, however, since most EPUB reading systems rely on
browser engines, it is possible that this functionality is inherited. Because access
to these media devices could allow an EPUB to record the user’s surroundings
or determine the user’s location, it proves a tempting target for a potential
attacker.

In this experiment, we evaluate whether the GeoLocation and MediaDevices
API are made available in EPUB reading systems, and if so, whether user
consent is required.

URI schemes

On the Internet, resources are referenced through URI, of which most rely
on the HTTP or HTTPS protocol. However, by using custom URI schemes,
websites can also instruct the browser to open applications upon activation
of the URI (e.g. by clicking a hyperlink), even passing on arguments in the
URI. For instance, the mailto: scheme is often employed to refer to an e-mail
address, and when activated, will open the operating system’s default mail
application [DMZ10]. Whereas the mailto: scheme is one of the official URI

METHODOLOGY 95

schemes issued by the Internet Assigned Numbers Authority (IANA) [IAN],
there are also many non-registered schemes used in practice.

To prevent misuse, modern browsers generally request confirmation from the
user to initiate another application. This precaution is considered critical as URI
links can be activated without any user interaction, e.g. through the click()
function in JavaScript. Depending on the security considerations of a referred
application, leveraging the arguments of such an activation could initiate a phone
call, send a mail or download a file, facilitating various attacks by respectively
exposing a user’s phone number or e-mail address, or downloading a malicious
payload.

In this experiment, we investigate whether EPUB reading systems support
initiation of applications through URI schemes, and if so, whether the reader
requested permission from the user for this action.

Browser engine evaluation

Considering that browser engines require regular patching to fix security bugs,
disclosed vulnerabilities could be abused to target reading systems with an
outdated browser engine.

In this experiment, we explore browser engine use in EPUB reading systems
by evaluating whether the embedded browser engine is outdated and insecure.
While at first sight consulting the user-agent string poses a straightforward
solution, this information might not correctly represent the underlying browser
engine. For instance, reading systems could have modified it, and WebKit has
stopped updating the user-agent string altogether [Webc]. Therefore, we identify
the embedded browser engine version by fingerprinting browser engines based
on supported features, leveraging MDN’s browser compatibility dataset [Mozi].
Such a fingerprint is constructed by evaluating support for each HTML element,
attribute and JavaScript API present in the MDN dataset. This way, we collected
almost 100 distinct fingerprints from applications whose embedded browser
engine is known, and subsequently used those to determine the embedded
browser engine of the reading systems. A browser engine is marked insecure if
its age has surpassed at least three years, and if any vulnerabilities are publicly
disclosed.

Background activity

To facilitate multi-tasking, mobile applications retain operation for a short time
after focus is lost (e.g. when the user switches to another app), depending on

96 READING BETWEEN THE LINES

the application’s configuration. However, to improve battery life and memory
consumption, mobile platforms impose restrictions on background tasks. We did
not find any official documentation on how much time an application is allowed
to run in the background on iOS, yet an Apple staff member has stated on the
official Apple Developer Forums that this is around three minutes after losing
focus [App17]. Similarly for Android, this exact time limit is undocumented,
but is said to be around ten minutes before the application is forced into idle
mode [Anda].

Likewise, EPUB reading systems can invoke this functionality to remain running
when switched to the background, increasing the time window of a potential
attack. By embedding a counter inside the EPUB, we can detect whether a
switch to the background paused the embedded JavaScript execution.

4.4.2 Evaluated EPUB reading systems

This testbed was used to evaluate a set of 92 free EPUB reading systems,
available for desktop platforms (Windows 10, macOS 10.14.6 and Linux Ubuntu
18.04), mobile platforms (iOS 12 and Android 9) or as browser extensions
(Chrome 78 and Firefox 70). We used the iOS App Store, Google Play Store,
Chrome Web Store and Firefox Add-on Store for selecting and installing reading
systems on iOS, Android, Chrome and Firefox. The selection was based on the
store’s search functionality, using the terms “epub reader” and “ebook reader”,
scanning the first 100 results each time. For Android, we limited our selection
to applications that were downloaded by at least 5.000 users. For the desktop
platforms, we used a web search engine to make up the selection of EPUB
reading systems, also leveraging curated lists. Here, we installed all encountered
applications by downloading them from a website or installing them using
the respective application store of the platform. By converting the evaluation
EPUBs to AZW e-books, we also evaluated Kindle applications if available on
the platform. For a complete overview of all evaluated EPUB reading systems,
we refer to Appendix C.

Additionally, we evaluated the five most popular physical e-reader devices
(Kindle Paperwhite 4, PocketBook Touch HD 3, Kobo Clara HD, Onyx Nova
Pro, Tolino Shine 3). Their pre-installed EPUB rendering applications were
tested out-of-the-box.

RESULTS 97

4.5 Results

This section will cover the results obtained by performing the semi-automated
evaluation described in the previous section. Some reading systems were not able
to render a perfectly compliant EPUB 3.2 e-book and were therefore excluded
from our evaluation (see Appendix C).

4.5.1 Desktop

For desktop-based reading systems, experiments were run on Windows 10
(17763), macOS (10.14.6) and Ubuntu (18.04).

Windows

Table 4.1 shows the results of our evaluation on the Windows platform, which
consisted of 15 reading systems. Of these reading systems, five execute embedded
JavaScript, which can be escalated to leak at least the existence of certain files,
and two of them can even be abused to leak file contents. Calibre 3 and MS
Edge grant EPUBs the ability to open third-party applications installed on
the user’s operating system. Interestingly, only the latter asks for the user’s
consent.

Interestingly, Adobe Digital Editions’s rendering behavior differs between files
residing on the local file system and files residing on a network share. Although

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Insecure
engineLocal Remote Existence Render Leak Cookies LocalStorage

Adobe Digital Editions (4.5.10) � � ‡ - # - # #
Bibliovore (2.0.2.0) # # - - - # # # - # -
BookReader (1.6.0.0) # # - - - # # # - # -
Bookviser Reader (6.8.1.0) # # - - - # # # - # -
Calibre (3.40.1) � � � � n � � � � � � � � � - # # -

(4.3.0)∗ # - - - # # - #§ #
CoolReader (n/a) # # - - - # # # - # -
EPUB File Reader (1.5) � � � � � � � � � � � � � # # - # #
FBReader (0.12.10) # # - - - # # # - # -
Freda (4.21) # # - - - # # # - # -
Icecream Ebook Reader (5.19)∗ # � � � � � � � � � � � � � � # # - #
Liberty (1.0.0.13) # # - - - # # - # -
MS Edge (44.17763.1.0) � � � � - # # - † #
Nook (1.10.1.15) # # - - - # # # - # -
Overdrive (3.8.0) # # - - - # # - # -
SumatraPDF (3.1.2) # # - - - # # # - # -

�.html file | �.png/.jpg file | �.txt file | �.log file | n.bogus file | �.mp3 file | �.mp4 file | �.ttf
∗ Only executes inline JavaScript.
† Requires user consent.
‡ Additionally renders textual files (.html, .txt), images (.png, .jpg), audio and video residing on
a connected network share.
§ Allows EPUB to open URL in default browser.

Table 4.1: Evaluation results for EPUB reading systems on Windows.

98 READING BETWEEN THE LINES

the means of access are identical; through an absolute file path, it only allows
an EPUB to render images located on the former, whereas textual files (.html
and .txt), images, audio and video can be rendered if located on the latter. This
can be exploited to enumerate both local files and files residing on a network
share. This vulnerability was assigned CVE-2020-3798, and has been resolved
since Adobe’s 4.5.11.187303 release of the application [Ado20].

Our tests identified WebKit 538.1 as the underlying browser for both Calibre
3 and Icecream Ebook Reader, which was released in 2014. This engine is
considered insecure, since several vulnerabilities are publicly disclosed. For
instance, by leveraging such a vulnerability [Lee17], we were able to leak arbitrary
file contents in Calibre 3. Fortunately, Calibre started using an updated engine
since its major update to version 4, effectively mitigating this vulnerability.

macOS

As shown in Table 4.2, except for FBReader and Amazon’s Kindle application,
all reading systems evaluated on macOS support JavaScript execution. All
reading systems that support JavaScript can communicate with a remote server
without informing the user. Moreover, half of the ten tested readers can leak
the presence of certain resources on the local file system by rendering them.
Three of those even allow an attacker to leak arbitrary files to a remote server.

Furthermore, four reading systems allow EPUBs to open installed applications
on macOS, leveraging specific URI schemes, without requiring user consent.
It is considered good practice for these referred applications to require user
interaction before irreversible actions are undertaken, however, this is not always
the case. For instance, when Skype for Business is configured as the default app
to handle tel: scheme URIs, activation of such a URI will immediately lead
to calling the included phone number. Although the results of this action are

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Insecure
engineLocal Remote Existence Render Leak Cookies LocalStorage

Adobe Digital Editions (4.5.10) # - - - # # - #
Apple Books (1.17) - - - # - # #
Azardi (43.1) # � � � � n � � � � � � � n � � � � � � � n # - #
BookReader (5.14) # � � � � � � � � � � � � � � � � � � n † - #
Calibre (3.40.1) � � � � n � � � � � � � � � � - # # -

(4.3.0) # - - - # # - #∗ #
FBReader (0.9.0) # # - - - # # # - # -
Kindle (1.25.2) # # - - - # # # - #∗ -
Kitabu (1.2) � �‡ - # # - #
Murasaki (1.0.2) � � � � n � � � � � � � � � � � � � � n # # - # #

�.html file | �.png/.jpg file | �.txt file | �.log file | n.bogus file | �.mp3 file | �.mp4 file | �.ttf
∗ Allows EPUB to open URL in default browser.
† Allows access to LocalStorage of other EPUBs.
‡ Attempts to load all resources in the default application without consent (except fonts).

Table 4.2: Evaluation results for EPUB reading systems on macOS.

RESULTS 99

very noticeable, since both a visual and auditory cue are given when the call is
initiated, it does not require any user interaction. Correspondingly, an attacker
could make the user initiate calls to their premium-rate telephone number, e.g.
when there has been no user activity for a certain time.

Linux Ubuntu

For the evaluation on the Linux platform, we only found three functioning
reading systems, as shown in Table 4.3. Here, Calibre (version 3 and 4) is the
only reading system that provides scripting support. Similar to the installations
on the other desktop platforms, Calibre 3 uses an outdated browser engine for
which a disclosed vulnerability can be exploited to leak arbitrary file contents.

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Insecure
engineLocal Remote Existence Render Leak Cookies LocalStorage

Calibre (3.46) � � � � n � � � � � � � � - # # -
(4.3.0) # - - - # # - #∗ #

FBReader (0.12.10) # # - - - # # # - # -
Okular (1.7.2) # # - - - # # # - # -

�.html file | �.png/.jpg file | �.txt file | �.log file | n.bogus file | �.mp3 file | �.mp4 file | �.ttf
∗ Allows EPUB to open URL in default browser.

Table 4.3: Evaluation results for EPUB reading systems on Linux Ubuntu.

4.5.2 Mobile

In this section, we discuss the results for EPUB reading systems on iOS 12 and
Android 9. Note that, to improve legibility, we omitted the browser identification
column in the mobile platform tables, since all relied on the engine framework
provided by the OS. Consequently, these browser engines are implicitly updated
with every system update, thus are considered up-to-date.

iOS

Out of the 20 evaluated iOS reading systems, 11 support JavaScript and allow
EPUBs to communicate with servers over the Internet without user consent,
as shown in Table 4.4. Only Apple Books requires explicit user interaction to
permit the EPUB to communicate remotely, which is then remembered between
sessions. Furthermore, two reading systems allow EPUBs to share LocalStorage
data, while four reading systems allow it to access the GeoLocation API or
enable it to open other applications, which in most cases requires user consent.

100 READING BETWEEN THE LINES

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Runs in backgroundLocal Remote Existence Render Leak Cookies LocalStorage
Aldiko Book Reader (1.1.6) # # - - - # # # - # #
Apple Books (4.2.3) - - - ∗ # - †
Bluefire Reader (2.9) # # - - - # # # - # #
CHMate (6.9.1) - - - # - #
Ebook Reader (4.0.8) - - - - # #
Eboox (1.60.1) # # - - - # # # - # #
Epub Reader (1.1) # # - - - # # # - # #
EPUB Reader (5.1.55) # # - - - # # # - # #
FBReader (1.0.10) # # - - - # # # - # #
Gerty (1.1.5) - - - # § - # #
Kobo Books (9.14) # - - - # # - #
Kybook 3 (0.7.8) # # - - - # # # - # #
Marvin (3.1.2) # - - - # Location† ‡ #
Play Books (5.3.0) # # - - - # # # - # #
PocketBook (3.2) - - - # # - # #
Power Reader (6.10) - - - - # #
R2 Reader (2.0.1) # - - - # # - # #
TotalReader (5.1.61) - - - # - #
YiBook (1.8.6) # # - - - # # # - # #
Yomu (2.3.0) - - - # § Location† # #

∗ Requires user interaction, only the first time.
† Requires user consent.
‡ Requires user constent, except for Mail app.
§ Allows access to LocalStorage of other EPUBs.

Table 4.4: Evaluation results for EPUB reading systems on iOS.

As a result of the iOS application platform design, the EPUB is isolated from
the rest of the file system: the user has to select the EPUB that will be loaded,
and the application can only access this particular file. Consequently, access
to local resources is blocked by design as these are not available within the
application.

Android

In contrast to the iOS reading systems, almost every reading system requests
the permission “Photos, media and files on your device”, either upon installation
or when attempting to import an EPUB. Interestingly, most also make use
of Android’s Storage Access Framework (SAF) [Andb], an API to access user-
selected files, which is more constrained but subsequently does not need explicit
permissions to facilitate importing EPUBs. However, when SAF is used in
combination with the file permissions, which was the case for all but two
applications, this does not prevent attacks that leak arbitrary file contents. In
fact, for three Android applications we could successfully leak arbitrary file
contents to a remote server, as shown in Table 4.5.

Again, the results show that JavaScript support provides additional capabilities
that often can be abused. Seven reading systems grant the ability to open
other applications, of which only one asks for user permission when this referred
application is the browser (i.e. by using the http or https scheme). Furthermore,
out of six applications that support access to the LocalStorage API, five do
not provide sufficient isolation, thus allowing access to content saved by other
EPUBs.

RESULTS 101

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handles Runs in backgroundLocal Remote Existence Render Leak Cookies LocalStorage
4shared Reader # # - - - # # # - # #
AlReader (1.911805270) # # - - - # # # - # #
Aldiko Book Reader (3.1) # # - - - # # # - # #
Aldiko Classic (3.1.3) # # - - - # # # - # #
Bookari Free (4.2.5) # # - - - # # # - # #
Book Reader (1.12.12) # # - - - # # # - # #
Cool Reader (3.2.32) # # - - - # # # - # #
Ebook Reader (1.0) # # - - - # # # - # #
Ebook Reader (5.0.8.2)∗ # - - - # § -
EBook Reader (3.5.0) # # - - - # # # - # #
eBoox (2.22) # # - - - # # # - # #
ePub Reader (2.1.2)† � � � � n � � � � � � � n � � � - # # -
Epub reader (4.0) # # - - - # # # - # #
Epub Reader (librera) (8.0.39) # # - - - # # # - # #
EPUBReader (1.0.32) # � � � � n � � � � � � - # # - #
eReader Prestigio (6.0.0.9) # # - - - # # # - # #
FBReader (3.0.15) # # - - - # # # - # #
Freda (4.31) # # - - - # # # - # #
FullReader (4.1.4) # # - - - # # # - # #
Gitden Reader (4.5.3) � � � � n � � � � � � � n � � � � � � n � � � # § - #
Google Play Books (5.2.7) # # - - - # # # - # #
Infinity Reader (1.7.57) - - - # # - #
iReader (1.1.4) # � � � � n � � � � � � � - # § -
Kindle (3.2.0.35) # # - - - # # # - # #
Librera (8.1.242) # # - - - # # # - # #
Lit Pub (3.5.3) # � � � � n � � � � � � � n � � � � � � n � � # § - # #
Lithium (0.21.1) - - - # # - ∥
Moon+ Reader (5.1) # # - - - # # # - # #
PocketBook (3.21)‡ # - - - # # # - # #
Reader FB2 (1.20) # # - - - # # # - # #
ReadEra (19.07.28) # # - - - # # # - # #
Reasily (1907d) # � � � � n � � � � � � � n � � � � � � � n � � # § -
Solati Reader (2.5.1) # # - - - # # # - # #
Supreader (3.2.30) # - - - # # -
Tolino (4.10.2) # # - - - # # # - # #

�.html file | �.png/.jpg file | �.txt file | �.log file | n.bogus file | �.mp3 file | �.mp4 file | �.ttf
∗ Crashes when attempting to render resource on local file system.
† Opens all referenced resources in a new frame.
‡ Only executes inline JavaScript.
§ Allows access to LocalStorage of other EPUBs.
∥ Requests user consent only when browser is launched.

Table 4.5: Evaluation results for EPUB reading systems on Android.

4.5.3 Browser extensions

For both Chrome and Firefox, we evaluated five extensions that are advertised
as EPUB reading systems. As shown in Table 4.6, three Chrome extensions
allow JavaScript execution, giving them access to persistent storage, and even to
the microphone, camera or location (provided that the user consents). Because
all EPUBs opened by these applications shared the same origin (chrome-
extension://[extension_id]), EPUBs can access the persistent storage of e-books
that were opened previously.

Application JavaScript Local Resources Remote
communication

Persistent storage Features URI handlesLocal Remote Existence Render Leak Cookies LocalStorage
Chrome extensions (3) ∗ # - - - † † Microphone, Camera, Location‡ ‡
Chrome extensions (2) # # - - - # # - ∥
Firefox extensions (5) # # - - - # # - ∥

∗ Only external JavaScript.
† Can access cookies and LocalStorage of other EPUBs.
‡ Requires user consent.
∥ Requires user click, and only works for mailto:.

Table 4.6: Evaluation results for EPUB reading extensions for Chrome

102 READING BETWEEN THE LINES

The remaining seven extensions do not allow JavaScript execution as a result of
the imposed CSP, prohibiting all inline JavaScript and only allowing resources
local to the extension [Moze]. Although remote resources are blocked by the
CSP, the extensions still provide functionality to fetch these (hence the ability to
perform remote communication). In Section 4.6 we show how this functionality
lead to a universal XSS in EPUBReader (available on both Chrome and Firefox).
This was also the only extension that automatically rendered an EPUB when a
referring link is clicked (achievable through JavaScript) in Chrome.

4.5.4 Physical e-reader devices

Only for the Kobo e-reader, our testbed confirmed limited JavaScript support, as
is documented by Kobo [Kob]. Note that the e-reader only executes embedded
scripts for KEPUB files (Kobo’s custom e-book format), these are created by
simply changing the .epub file extension to .kepub.epub. Furthermore, we
could use the e-reader’s internet connection to contact remote servers without
user consent. Finally, the embedded browser engine framework was identified
as QT 5.2.1 (released in 2014) for which several vulnerabilities have been
reported [CVE].

Amazon’s publishing guidelines affirm that scripting is not supported, and that
all scripts are stripped from the source during conversion [Ama19]. However,
as part of a manual evaluation of the Kindle, we found this to be inaccurate:
the browser engine supports JavaScript execution, although it is disabled by
default (in Section 4.6.3 we show how this can be circumvented).

4.6 Case studies

To complement our semi-automated evaluation, we manually analyzed a
select number of applications for implementational flaws. This selection
was based on different characteristics: Apple Books on macOS (popular pre-
installed application that supports JavaScript but prevents rendering local files),
EPUBReader (the most widely used browser extension on both Chrome and
Firefox), and Kindle (the most widely used physical e-reader, with an 83.6%
market share in the US [DG19]).

CASE STUDIES 103

4.6.1 Apple Books

As we discussed in Section 4.5.1, the capabilities detected by our semi-
automated evaluation did not lead to direct local file system access in Apple
Books for macOS, even when leveraging symbolic links. However, through
manual evaluation, we identified a user information disclosure vulnerability and
persistent denial of service vulnerability.

The user information disclosure vulnerability allows an attacker to infer whether
a specific EPUB is present in the user’s library. When an EPUB is opened
by Apple Books, it is unpacked and stored in a folder (Books) alongside other
previously unpacked EPUBs. The contents of each EPUB are stored in a
separate folder named after the EPUB’s deterministically assigned 32-character
serial ID. While we could not infer how this ID is generated exactly, we have
verified that an EPUB is assigned the same ID across multiple devices or
accounts. Although embedded symbolic links referring outside of this directory
are denied, these links would still remain functional when pointing to a location
within the EPUB folder, or even within the Books directory. As a result, to gain
information about the contents of the user library, an EPUB could include a
series of symbolic links, referring to potential locations of unpacked EPUBs. By
verifying whether an arbitrary file in such a folder can be rendered, the EPUB
can disclose whether any of the selected EPUBs is present in the user’s library.
We found that the iOS applications Gerty and Marvin could be exploited in a
similar way.

The persistent denial of service attack is achieved by simply including a symbolic
link that refers to the Books folder in which the EPUBs are unpacked. This will
cause Apple Books to crash, reporting that it cannot access the user’s library,
for every subsequent reboot. Because Apple Books is an integral part of the
operating system, it cannot be reinstalled without reinstalling macOS.

In response, Apple issued a CVE for both vulnerabilities (CVE-2019-8789 and
CVE-2019-8774, respectively), and distributed a fix through operating system
updates [App20a; App20b; App20c; App20d].

4.6.2 EPUBReader extension

The results of our semi-automated evaluation in Section 4.5.3 show that all
Firefox extensions and two Chrome extensions block JavaScript execution, due
to the imposed CSP. Even more interesting; upon installation, three extensions
request permission to read and change all data of visited websites, using the
<all_urls> permission indicator [Chra]. This allows the extensions to send

104 READING BETWEEN THE LINES

HTTP requests to any visited website and read out the response. Moreover, if
the user is logged in on such a website, the request will implicitly include session
cookies, and thus authenticating the user. By bypassing the CSP restrictions for
embedded JavaScript in EPUBReader for both Chrome and Firefox, we were
able to abuse this permission to steal user account information of any website
on which the user is logged in, effectively leading to a universal XSS.

Although including remote resources directly is prevented by EPUBReader’s
CSP, it still tries to provide this functionality by first fetching the included
images and referred media files, and then making their content available
through a blob:// URL (which is allowed by the default CSP). We leveraged
this functionality to trick EPUBReader to make a JavaScript file available
as a blob:// URL (by simply including this file as an image). Because
these URLs contain an unguessable UUID, we first used a CSS-based data
exfiltration technique to leak this to the attacker server. Finally, the adversary
can dynamically generate another EPUB that refers to this blob:// URL,
and then tricks the reader to open this generated EPUB (EPUBReader will
automatically try to read EPUBs based on the URL pattern). Finally, the
JavaScript payload will be executed, giving the attacker the same privileges as
the browser extension (access to all authenticated content on all websites). A
proof-of-concept implementation of our attack requires a single user interaction,
such as a click, from the victim on Chrome in order to open a new window;
on Firefox the attack can be performed without any user interaction, and is
unnoticeable. Collectively, this affects almost 300,000 users.

4.6.3 Kindle

Our semi-automated evaluation indicated that Kindle does not support
JavaScript execution, as confirmed by the publishing guidelines [Ama19]. By
reverse engineering the application that renders the converted AZW3 files
(webreader), we found that WebKit 534.26 is used to render e-books, but that
in the browser engine’s settings, the enable-scripts property is set to false.
However, the application itself uses JavaScript to extract information from the
DOM or to change styles.

Before each JS execution, the enable-scripts property is set to true, and
immediately after it is set back to false. Consequently, JavaScript code
contained in the EPUB will never be executed. Nevertheless, we found that
some of the code that was being executed by the application contained dynamic
values, some of which could be controlled by an attacker. For instance, a
script that is executed on every page refresh includes the font that is used.
This value can be controlled by the attacker by changing the font, which is

REAL-WORLD ANALYSIS 105

done by sending a GET request to the webreader’s SOAP server. Although
the rendering engine also blocks web requests, this can be circumvented by
leveraging SVGs. Presumably these are rendered outside of the browser engine,
and thus an <image> element with the xlink:href attribute will trigger a
request. Consequently, it is possible to set the font to an arbitrary value. When
the font contains a single quote, it can escape the string context of the dynamic
code and execute arbitrary code.6

Once the attacker can execute JavaScript, it is possible to extract the contents of
arbitrary files on the system by leveraging the built-in image viewer. This viewer
can be automatically triggered by sending a GET request to the webreader’s
SOAP server, containing the URL of the image that should be displayed. This
viewer uses the native file_get_contents() function to get the URL’s content
and then base64-encodes it to embed it in an element’s data: URL. As
such, the content of any arbitrary file (not just images) can be be extracted,
and subsequently leaked to the adversary by initiating a WebSocket connection,
which also is not blocked by the rendering engine.

4.7 Real-world analysis

In this section, we analyze the EPUB ecosystem by assessing the presence of
malicious and tracking EPUBs in the wild, and the feasibility of distributing
them through a self-publishing service.

4.7.1 Malicious and tracking EPUBs in the wild

In order to investigate whether any of the discussed techniques are currently
being used in the wild to either attack or track users, we performed an additional
analysis of EPUBs available in a real-world setting. To this end, we downloaded
several free EPUBs from five popular online e-book stores (eBooks.com, Google
Play Books, Project Gutenberg, Kobo, Amazon). After a manual inspection of
the e-books, we did not find any indication of abuse. It should be noted however
that this evaluation is limited, and only considers abuse by the EPUB stores;
abuse by individual publishers would be infeasible to evaluate from an external
perspective, as this would require purchasing a very large number of e-books.

To further evaluate other types of abuse, we obtained a large number of EPUBs
from file sharing platforms. More precisely, we downloaded the 1,000 most

6Because the length of the font name is limited, the malicious payload has to use eval()
on the textContent of a (hidden) DOM element.

106 READING BETWEEN THE LINES

popular and most recent EPUB torrents from The Pirate Bay and the same
amount from 4shared (these are marked as the most widely used sources to
illegally obtain an e-book according to a study by Digimarc [Dig17]). In total,
we obtained 7,238 EPUB files from torrents (in several cases, a single torrent
contained multiple EPUBs), and 1,807 from 4shared. Next, we unpacked all
EPUBs and parsed all documents, looking for possible types of abuse (references
to files on the local file system, symbolic links, connections to a remote server,
and JavaScript inclusions). We did not find any evidence of abuse, either
in terms of tracking or attempts to compromise the EPUB reading system.
Interestingly, we found that only 65 e-books, less than one percent of all 7,238
considered EPUBs, made use of JavaScript. In most cases, the code was minimal,
and was used to change the background color or font size. All e-books were
completely functional without executing the JavaScript code.

4.7.2 Malicious EPUB distribution through self-publishing

To explore the feasibility of publishing malicious EPUBs through official e-book
vendors, we submitted manuscripts to the six most popular free self-publishing
services. For each service, we bought the published version of our manuscript
to check whether any of the embedded scripts were still present. The following
is a list of these services, along with their associated vendor and its e-book
market share according to the 2017 AuthorEarnings report [Aut17]: Kindle
Direct Publishing (Amazon, 80%), iBooks Author (Apple Books, 10%), Barnes
& Noble Press (Barnes & Noble, 3%), Kobo Writing Life (Kobo, 2%), and
Google Books Partner Centre (Google Play Books, 1.4%). No exact figures
were available for the sixth tested service, Smashwords, however they also
distribute self-published titles through Apple Books, Barnes & Noble, and Kobo
in addition to their own website [Sma19].

Of the six vendors, only Google Play Books rejected our submitted manuscript.
Although Amazon succeeded in removing most scripts, we were still able to
publish the exploit discussed in Section 4.6.3, which could target millions
of Kindle devices. The remaining four vendors appeared to take no vetting
measures at all; embedding scripts in a published EPUB was trivial. Of these,
only Smashwords provides downloadable EPUB files upon purchase, hence, any
EPUB reading system can be used to open them. The other three vendors
deliver e-books directly to their associated reading systems (however, this can
be circumvented). For Apple Books (application) and Kobo (application and
physical e-reader), the embedded scripts were executed, and even allowed remote
communication. However, Barnes & Noble’s application crashed upon rendering
embedded scripts, curbing potential abuse.

DISCUSSION 107

In conclusion, our experiment shows that four out of six evaluated self-publishing
services can be abused to distribute malicious EPUBs through official vendors.
These vendors account for approximately 94% of all EPUB sales, of which
at least 33% is attributed to self-published EPUBs according to the 2017
AuthorEarnings report [Aut17]. We notified all five self-publishing services of
which the vetting process was deemed inadequate.

4.8 Discussion

Our semi-automated evaluation shows that many of the JavaScript-supporting
EPUB reading systems do not correctly enforce the specification’s security
recommendations, and thus can be abused in several ways. Furthermore, a
significant part of these reading systems does not prevent EPUBs from accessing
the local file system and even provide JavaScript APIs that are not included in
the EPUB specification. In this section, we elaborate on the underlying issues
and make suggestions on what can be improved to remedy the various issues.

4.8.1 EPUB reading system implementations

In contrast to mobile reading systems, we identified a high variety of rendering
engines for desktop reading systems. Moreover, we find that five of the evaluated
desktop applications employ an outdated engine, and consequently, a publicly
disclosed vulnerability could be leveraged to exploit the application. Even
applications that employ a more up-to-date engine may still be affected by
so-called n-day vulnerabilities [Cui18; Wan+19], security issues that have been
patched in the upstream component (and thus known publicly), but that still
affect software that did not yet update this vulnerable component. As it may
take days, or even years (e.g. in the case of Calibre 3) to update a known-
vulnerable browser engine, we believe this forms a significant threat for EPUB
reading systems.

For both mobile platforms, we found that applications relied on the built-
in renderer, and thus all share the same version. Another key difference
with desktop applications is that mobile reading systems operate from a
more sandboxed environment by default. For instance, on iOS, none of
the applications requested permission to access other files on the system,
and consequently could not be abused to render or leak files on the local
system. Although a similar functionality is available on Android, through
the Storage Access Framework [Andb], most applications still required file
permissions, and as a result, we managed to detect the existence of files in

108 READING BETWEEN THE LINES

six applications, and leak their contents in half of those. This highlights
that developers should try to use the minimal amount of privileges to reduce
the potential consequences of an attack. By further analyzing the Android
applications, we found that for two the file-leak vulnerability was caused by
configuring the WebView component to allow access to the local file system,
using setAllowFileAccessFromFileURLs [Andc].

Although several applications would render files on the local filesystem, not all
of them lead to extraction of their contents. Our manual analysis of these cases
showed a direct relation to SOP enforcement: the EPUB content was served
from a custom, non-existent domain, preventing access to file:// resources.
Yet, not all reading systems implementing this practice were able to achieve
complete isolation of the local file system. For instance, Adobe Digital Editions
on Windows employs a dedicated domain, but EPUBs are still allowed to render
local images or even HTML files on network shares. The latter is especially
dangerous, as it gives access to the file:// from where the local filesystem can
be accessed.

4.8.2 EPUB specification

Although a valued effort has been made to include effective security
recommendations, we argue that the EPUB specification does not impose
sufficiently strict requirements for EPUB reading systems. Of course, the
responsibility to actually conform their reading system to the specification’s
security requirements remains that of the developers, however, hardened
requirements could eventually be consolidated into a quantified compliance
checker application.

Probably even more effective would be attenuating the capabilities that are
to be granted according to the EPUB specification. For instance, an EPUB
is allowed to only refer to audio, video and fonts through static XHTML and
CSS, but any resource is allowed to be retrieved by embedded scripts [CG19].
This can be useful for keeping the size of an EPUB small, since the more
sizable audio and video files can be fetched from an online service. However,
access to resources from the local filesystem, which in the current version of the
specification is allowed, introduces a significant threat, which does not outweigh
its limited benefits. Furthermore, the ability to render local resources implies
the ability to determine their existence, information that can be gained for
various purposes among which file system fingerprinting. For this reason, we
argue to completely prohibit EPUBs from referring to resources that reside on
the user’s operating system. Moreover, as reference to remote resources is very

RELATED WORK 109

rare in EPUBs, we strongly believe that this should require consent from the
user, in order to prevent any form of tracking.

Interestingly, our semi-automated evaluation revealed that more than half of the
JavaScript supporting reading systems also support GeoLocation and UserMedia
APIs, or opening applications through URI handles, functionalities that are
not mentioned in the EPUB specification. These functionalities originate from
the underlying browser engine, and are likely not considered by the developer.
Assuming the EPUB specification does not aspire to incorporate such browser
functionalities, we argue that the specification should include a whitelist of
APIs that can be enabled.

Based on our real-world analysis of 9,000 EPUBs, we argue that the discussed
restrictions for the EPUB specification would have a minimal impact; none of
the analyzed EPUBs required local or remote resources to render correctly, and
even the few that embedded JavaScript remained functional when execution
was prevented. In that regard, we also propose to reconsider the capability of
unrestricted JavaScript execution in EPUB reading systems, perhaps requiring
user consent when a script is about to be executed.

4.8.3 Responsible disclosure

All vulnerabilities, either identified through our semi-automated testbed or our
case-studies, were responsibly disclosed to the involved parties. In addition,
we sent out an early warning to all vendors whose reading system did not
satisfy the specification’s security recommendations. In total, we reached out
to 33 vendors, responsible for 37 reading systems, each time using the most
appropriate private channel that was available. Although we received a generic
or no response from the majority, vendors of very popular reading systems such
as Apple and Adobe were eager to solve the reported issues, for which three
CVEs were issued.

4.9 Related work

We did not encounter any prior studies evaluating the implications of web
technology use in non-browser applications. However, our work shares several
similarities with the following research.

110 READING BETWEEN THE LINES

4.9.1 Portable Document Format

Today, PDF is one of the most popular file formats used for operating system
independent document exchange. Its capabilities bear close resemblance to those
of the EPUB format, including support for scripting and network connectivity.
Unfortunately, previous research has demonstrated that these traits may to
lead to security, privacy and content integrity vulnerabilities [BS12; CSS10;
Mla+18]. In that regard, we hope that by expressing our concerns about EPUB
capabilities at an early stage, the specification can be adapted to avoid similar
consequences.

Various research efforts focus on the use of machine learning to distinguish
between benign and malicious PDF files. Research by Smutz et al. and Srndic et
al. argue that PDF file metadata and structure are valuable features that can be
used by a static, machine learning based detection system [SL13; SS12]. Maiorca
et al. demonstrated a new evasion technique for PDF file analysis based on logical
structure; they also present a framework to solve this problem [MCG13]. Nissim
et al. performed an extensive study reviewing and comparing state-of-the-art
techniques for detecting malicious PDF files [Nis+15].

4.9.2 Comprehensive policy evaluations

Various studies have exposed vulnerabilities and inconsistencies in browser policy
implementations through comprehensive evaluations. By combining manual
and automated analysis in four popular browsers, Aggarwal et al. uncovered
several implementational weaknesses for private browsing modes [Agg+10].
Furthermore, they show that some of these weaknesses can be exploited
by an attacker to bypass the imposed privacy policy. Schwenk at al., on
the other hand, performed a comprehensive evaluation of the same-origin
policy in 10 browsers, leveraging an extensive set of 544 different test
cases [SNM17]. Their results exposed various vulnerabilities and inconsistencies
among browsers, pleading for a formal definition of the same-origin policy. In
another study, Franken et al. performed an evaluation of third-party cookie
policy implementations in 7 browsers and 46 browser extensions, leveraging
their automated framework [FVJ18]. According to their results, all imposed
third-party cookie policies of all major browsers as well as evaluated extensions
can be bypassed. Finally, a longitudinal study by Luo et al., comprising of 20
different mobile browser families, analyzed support for eight different security
mechanisms over the course of seven years [Luo+19]. Their findings expose
various issues such as lacking support and multi-year vulnerability issues, even
for several popular mobile browsers.

CONCLUSION 111

4.10 Conclusion

In this chapter we report on a semi-automated evaluation to measure the
security and privacy practices of 92 free EPUB reading systems and five physical
reading devices. Our results show that almost none of the systems that support
JavaScript execution adequately adhere to the security considerations of the
EPUB specification. For eight reading systems, a malicious EPUB can even
extract arbitrary files from the local system.

We are the first to comprehensively evaluate the security and privacy practices of
EPUB reading systems, and hope to increase awareness of the associated threat
surface among users and developers. Furthermore, we propose that the current
security recommendations of the EPUB standard should be refined into binding
requirements. To further assist developers, additional documentation could be
provided in more specific terms how existing browser engine frameworks can be
correctly incorporated, pointing out critical configuration elements.

In addition to this large-scale evaluation, we also performed a more elaborate
manual analysis of a select number of EPUB reading systems. This manual
analysis exposed two severe security issues: first, as soon as a malicious EPUB
would be opened in Kindle, it could leak arbitrary files from the local system;
second, the entire browsing session of users with the EPUBReader browser
extension can be compromised upon visiting a malicious website. The results
also highlight that the outcome of our semi-automated evaluation should be
considered a lower bound, and that several security and privacy issues rely on
application-specific behavior.

As part of our assessment of the EPUB ecosystem, we performed an analysis of
more than 9,000 EPUBs, obtained “in the wild” from five online e-book stores
and two popular file sharing platforms, and evaluated the vetting process of
six popular self-publishing services. We did not find evidence of any ongoing
abuse, indicating that the issues identified through our evaluations are indeed
novel. However, this and the fact that four of the evaluated self-publishing
services allowed JavaScript inclusion which could lead to publication of malicious
EPUBs, make this study timely: we urge developers to further mitigate the
identified issues and adopt additional security measures before their users are
exploited.

Finally, we demonstrated that the consolidation of established web technologies
in non-browser applications does not necessarily imply a proper translation
of the web security and privacy primitives. With this study, we hope to have
motivated the need for more comprehensive and in-depth evaluations in this
largely unexplored research domain.

5
Conclusion

The right understanding of any
matter and a misunderstanding of
the same matter do not wholly
exclude each other.

– Franz Kafka [Kaf25]
(The Trial, 1925)

Browser policies serve as the final barrier against potential security and privacy
breaches on the Web. Unfortunately, even long-standing policies that have been
in place for years exhibit critical vulnerabilities that make them fall short of
their intended purpose, with adverse effects on user security and privacy. In
this dissertation, we have identified numerous implementation shortcomings by
leveraging automated dynamic testing. In doing so, we have unveiled their root
causes and various handling flaws, supported by empirical data. Moreover, our
research demonstrates that these issues also impact non-browser applications
that incorporate web technology.

In this concluding chapter, we will summarize the contributions presented in this
dissertation, outline potential areas for future research and explore strategies
for enhancing current browser engine development and deployment practices.
Ultimately, we will share our final thoughts on the future of browser engine
security and privacy.

113

114 CONCLUSION

5.1 Summary of contributions

In Chapter 2, we presented the first systematic and comprehensive study of
policies governing the most fundamental pillars of the Web: HTTP cookies and
requests. Through the development of a novel framework for dynamic policy
implementation analysis, we identified a multitude of issues for the employment
of cross-site countermeasures and anti-tracking policies in popular web browsers.
Initially introduced as a safeguard against CSRF attacks, same-site cookies
were discovered to be implemented inconsistently which allowed a bypass in
various web browsers. Remarkably, even the built-in setting to simply block
all third-party cookies proved to be ineffective in Chromium-based browsers,
as it could be circumvented by embedding JavaScript in a loaded PDF file.
Moreover, virtually none of the assessed privacy measures succeeded in fulfilling
their intended purpose of providing comprehensive protection against tracking.
Our real-world investigation found no evidence of active exploitation of these
bypasses in the wild, allowing developers to address the issues before any
potential exploitation could occur. Although our follow-up study recognized
efforts to tackle the these issues, developers remained unable to fully eliminate
all previously identified workarounds against cross-site countermeasures and
anti-tracking policies, thereby leaving these protective measures ineffective.
This serves as a clear exhibition of the challenges inherent in achieving a
comprehensive policy implementation.

Building upon the foundational work discussed in Chapter 2, we directed our
focus toward identifying the underlying causes of implementation flaws within
browser policies in Chapter 3. To achieve this, we conducted an extensive
analysis of the entire lifecycle of nearly all known CSP bugs at the time of our
study, with CSP being one of the oldest and most important browser security
policies. We created the BugHog framework to facilitate this analysis, which is
capable of conducting dynamic evaluations on Chromium and Firefox revision
binaries spanning over a decade, encompassing CSP’s entire development history.
As such, BugHog proves to be an invaluable tool in the process of identifying code
revisions responsible for introducing or resolving policy bugs by automating the
majority of the steps involved. Aided by BugHog, our examination of lifecycles,
bug reports and code revisions exposed recurring issues that contributed to the
origin of policy bugs. Based on our results, we emphasized the crucial role of
browser architecture in preventing policy bugs, with the centralization of policy
logic and enforcement as a key factor. However, our study revealed that the
root causes of policy bugs extend beyond policy implementation as well, where
human mistakes and ineffective protocols within the context of bug handling
practices led to the public disclosure of unresolved security bugs. In that same
light, we urged for a more effective communication channel between browser

FUTURE WORK 115

vendors for sharing security bugs, since we found several cases in which bugs
were reported, fixed and publicly disclosed through the bug tracking platform
of one vendor, but remained unresolved in browsers of other vendors, leaving
users vulnerable for extended periods of time.

While many native applications across various platforms incorporate browser
engines, this class of applications was never subjected to a comprehensive and
in-depth security and privacy analysis. In Chapter 4, we addressed this gap
by conducting an evaluation of the security and privacy implications of EPUB
reading systems, revealing that they share numerous issues with web browsers.
We pinpointed several vulnerability causes, including the use of outdated browser
engines, the insecure configuration of browser engines and overly permissive
capabilities for loaded EPUBs. Furthermore, we demonstrated that EPUBs
exploiting these vulnerabilities can be distributed by adversaries using the
self-publishing services of popular online bookstores, such as Amazon’s Kindle
Store, Apple Books and Rakuten Kobo. Several of the identified issues stemmed
from shortcomings within the EPUB specification, giving rise to security and
privacy concerns. As part of our effort to improve overall user security and
privacy, we not only released our semi-automated testbed but also expanded the
W3C test suite used by their official EPUB compliance checker. Furthermore, in
the forthcoming iteration of the EPUB specification, significant improvements
have been made. Among these enhancements, the most critical is the explicit
requirement to prevent EPUBs from accessing the local file system, marking a
step in the right direction.

The work presented in this dissertation uncovered numerous security and privacy
bugs, which were all responsibly disclosed to the affected parties. All frameworks
and testbeds have been published as open-source, allowing for further research
and development.

5.2 Future work

In the house of research, every opened door ushers us into a vast corridor
filled with yet unopened doors. The work presented in this dissertation is no
exception, and as such, numerous exciting directions for future research remain
to be explored.

116 CONCLUSION

5.2.1 Comprehensive implementation verification

Verifying the robustness of a security policy implementation through dynamic
evaluation can be regarded as an optimization problem. The ultimate objective
is to find the minimal set of test cases that covers all possible browser
behaviors for which the policy should interfere. As previously discussed in
Section 1.5.1, this comprehensive approach necessitates considering all possible
policy configurations on one hand and all possible browser behaviors that can be
triggered by a web page (e.g. through the use of HTML elements or JavaScript)
on the other hand. Nevertheless, even when filtering out irrelevant combinations,
this would result in an explosion of test cases, leaving the task of verifying the
correctness of the policy’s interference for each test case.

In previous research, testbeds have been constructed using a variety of
approaches. These include repurposing existing unit tests [Agg+10], employing
template-based generation [HMN15; Luo+19; RPS23; SNM17], leveraging real-
world deployment [Sin+10], manual curation [Luo+17] and grammar-based
generation [Wi+23]. Methodologies for testbed creation are influenced by the
specific type of policy being evaluated. As such, to ensure a comprehensive
evaluation of unexplored policies, it might be necessary to develop novel
methodologies tailored to those policies, as there is currently no established
policy-agnostic approach available to address this need. Additionally, there is
an opportunity to enhance existing methodologies, such as reducing the number
of test cases by applying heuristics to target the most relevant test cases. Or,
to expand the existing collection of test cases, automated methods involving
targeted permutations can be employed. These methods could involve altering
embedded browsing contexts or modifying attribute values of HTML elements.

Once all test cases are executed, all outcomes should be evaluated to determine
whether the policy’s interference is correct or not. The chosen methodology
for generation is crucial here, as it determines the type of outcomes that are
collected. For example, if only test cases in which a policy should interfere are
generated or labeled, we would already know where the absence of interference is
a bug [Agg+10; HMN15]. This assessment can be conducted manually, provided
the number of test cases is manageable. Another approach is to identify
inconsistencies between different web browsers and consider these as indications
of faulty behavior [SNM17; Wi+23] or employ machine learning [RPS23]. Other
directions could be taken such as considering inconsistencies observed over time
in a longitude analysis to aid in the determination of the correctness of the
policy’s interference. This approach could enhance the efficiency and accuracy
of the evaluation process, particularly when dealing with a large volume of test
cases or evolving web environments.

FUTURE WORK 117

Note that comprehensiveness could also be found in the form of formal
verification [Akh+10; Ban+14; FKS16; FKS17; JTL12]. However, the manual
effort required to create a formal model of browser behavior is substantial,
especially when considering that the Web is constantly evolving.

5.2.2 Standardized language for bug reporting

Currently, the templates for reporting security bugs on browser vendor tracking
platforms lack standardization. These platforms typically provide loosely defined
templates that can be filled in by the reporter, including for example a freeform
description on how to reproduce the bug. This leads to significant variability
in the quality of bug reports, making it challenging at times to reproduce the
reported issues. In some instances, reproduction is even rendered impossible due
to link rot. This occurs when the bug is inadequately described in the report
and the linked PoC residing on an external web page is no longer available.
This situation poses problems both for research that relies on these bug reports
and for browser vendors who may wish to revisit a bug report at a later stage.

Standardizing bug reporting templates and emphasizing the significance of
comprehensive and resilient bug descriptions could serve as effective solutions to
address these issues. The difficulty lies in finding a balance where the standard
is flexible enough to accommodate different types of bugs while maintaining a
level of strictness that ensures all relevant information is consistently included.
This language could be either used by reporters or by triagers to describe the
bug, or both. Moreover, the adoption of a standardized language could bring
additional benefits, including improved bug categorization, which is currently
futilely attempted through inconsistent labeling practices. It could also improve
the exchange of bug information between vendors and researchers, and support
the automated creation of PoCs. These PoCs could then be integrated into
automated testing frameworks, enhancing the overall robustness of security
evaluations and bug assessments.

5.2.3 BugHog

The BugHog framework is a powerful tool for analyzing the lifecycles of browser
bugs, but there is always room for improvement. Firstly, it is important to note
that the current version only supports the evaluation of Chromium and Firefox,
and it would be valuable to expand its capabilities to include other popular
browsers. Specifically, incorporating the open-source WebKit browser engine
would be a significant enhancement, as WebKit serves as the foundation for
Safari, enabling a comprehensive analysis of the three major browser families.

118 CONCLUSION

Since our study discussed in Chapter 3 revealed architectural differences that
influenced the security of one browser over the other, this addition could provide
us with more valuable insights. Furthermore, certain browsers introduce unique,
browser-specific features that are not inherent to the embedded browser engine,
and thus, evaluating browsers within the same browser engine family may be
warranted. In a similar vein, mobile variants also present an interesting avenue
for exploration, as they are known to display distinct behavior in comparison to
their desktop counterparts [Luo+19]. Nevertheless, note that the transparency
of browser vendors is crucial here, as we rely on the availability of source code
and bug reports. For instance, while security bugs in Chromium and Firefox
are publicly disclosed by default after a certain period of time, this is not the
case for Safari unfortunately.

Secondly, the process of identifying bug lifecycles still involves a number of
manual steps. One significant challenge stems from the reliance on the limited
set of publicly available revision binaries, published by browser vendors. In
cases where required binaries are not publicly available, researchers may have
to manually sift through a limited range of revisions to locate the relevant
revision. The current solution involves the reseacher building a select set of
revision binaries to alleviate the manual workload, but this approach demands
a substantial amount of storage space and computing power, and is not always
straightforward due to the intricacies of the build process. Additionally, it is
worth noting that browser vendors likely build more binaries than they make
available online, so having access to these unpublished binaries would be highly
advantageous. To reduce manual effort, alternative methods can be explored
as well, such as the use of heuristics to pinpoint the most probable revision
of interest within a specific range. This method allows for a more structured
manual review process, where revisions are assessed in order of likelihood, ideally
reducing the number of revisions that require manual inspection. Algorithms
like SZZ [ŚZZ05] could be employed to implement such heuristics effectively.

The foregoing of this section has highlighted just two of the numerous potential
enhancements that could be made to the BugHog framework. There are several
other avenues for improvement, including the integration of existing test suites
like WPT. This addition could expand the framework’s capabilities, allowing it
to consider a wider range of test outcomes and assess browser behavior more
comprehensively. Furthermore, to expand its test surface, the framework could
incorporate functionality for evaluating file system state to identify potential
side-effects at OS level. Additionally, it could examine browser state from a
broader perspective by also considering elements such as LocalStorage [Mozh]
and IndexedDB [Mozg].

FUTURE WORK 119

5.2.4 Browser engines in non-browser applications

Reusing browser engines in non-browser applications is a widespread practice,
enabling developers to harness their tried and tested rendering capabilities.
Nevertheless, as detailed in Chapter 4, this approach can give rise to security and
privacy concerns. It is important to note that our focus in this chapter has been
specifically on the incorporation of browser engines in EPUB reading systems,
but this practice extends beyond this particular class of native applications.
It would be valuable to explore the security and privacy implications in other
categories of native applications that incorporate browser engines, such as
messaging apps, office software and even games.

In particular, an interesting area of investigation lies in the analysis of the
security and privacy ramifications of the deployment of outdated browser
engines in non-browser software. For instance, consider the most recent release
of Microsoft Teams, which, at the time of writing, is version 1.6 and embeds
Electron 19.1.8 [Mic]. This release of Electron is severely outdated and has been
without eligibility for security fixes for already a year [Git22].1 Additionally,
investigating the integration of web browsers by so-called “smart” devices like
smart TVs, smartwatches, smart speakers and even smart fridges holds promise
for further insights. For instance, managing timely browser engine updates on
these devices may pose unique challenges, as prior research indicated that these
devices are more prone to employ outdated software components compared to
desktop and mobile applications [PXH22].

In numerous non-browser applications, a large set of unnecessary browser
features is inherited from the embedded browser engine, often unbeknownst to
the developer. This unnecessarily expands the attack surface of the application,
potentially leaving room for exploitation by malicious actors. For instance, in
the context of EPUB reading systems, features like the ability for a loaded
EPUB to open external applications are completely unnecessary, yet they are
often included through the embedded browser engine. Therefore, exploring
the feasibility of developing a lightweight browser engine explicitly tailored
for non-browser applications would be an interesting research direction. To
make it adaptable for diverse applications, this engine could be designed with a
modular architecture, allowing developers to cherry-pick and include only the
specific functionalities relevant to their use cases. By default, it could feature a
minimal renderer, akin to the simplicity of web browsers from the 1990s, thereby
significantly reducing the attack surface.

1Electron backports security fixes to its latest three stable major versions [Elea]. At the
time of writing, Electron’s latest stable major version is 27, and consequently, security updates
only extend to versions 26 and 25.

120 CONCLUSION

5.3 Thoughts on development and deployment

In this section, we outline our thoughts on how browser engine development
and deployment can be improved. While these recommendations may align
with future research directions to some extent, our primary emphasis here lies
with actionable steps that draw upon the expertise and resources of vendors.

5.3.1 Code base

One crucial takeaway of this dissertation is the intricate challenge of maintaining
a code base comprising millions of code lines that has to keep up with the ever-
evolving collection of web mechanisms and policies. As discussed in Chapter 1,
the architecture of this code base was not originally designed with the current
state of the Web in mind. Browser developers in the 1990s could not have
predicted all features that would be incrementally incorporated into browsers.
And while indeed the core of browsers might have changed over the years
too, some artifacts of the past such as component architectures and design
decisions still remain. In numerous instances, particularly in the context of
policy enforcement, these remnants present a difficult challenge when it comes
to aligning them with newly introduced functionality. It seems evident that
indeed browser vendors favor the pragmatic approach of building upon existing
code, rather than developing a browser entirely from scratch. However, does
starting with a clean slate pose as a viable solution for a more durable browser?

When examining this issue from an economic standpoint, it becomes obvious
that a substantial investment of resources is required. By using the Constructive
Cost Model (COCOMO) we can gauge the cost of developing a browser without
forking from an existing code base [Boe81].2 COCOMO relies on the number
of lines of code to estimate the development costs of a software project. In
Table 5.1, we compare the estimated development costs of Chromium and
Firefox with those of other major open-source projects. Although there is an
expected margin of error in this estimation, it nonetheless underscores that the
cost of building a browser from scratch is comparable to that of other significant
open-source projects, necessitating a substantial allocation of resources.

Even if an organization would be prepared to commit resources of such a
substantial magnitude, other challenges remain to overcome. Perhaps the most
critical question is: How can we ensure that this new browser does not succumb

2COCOMO is considered outdated, but for the sake of simplicity, we employ it as a
comparative baseline. Although numerous other models exist, they would require additional
data that is not readily available. In this calculation, we applied a coefficient of a = 2.4 and
an exponent of b = 1.05.

THOUGHTS ON DEVELOPMENT AND DEPLOYMENT 121

Project Lines of code∗ Person-years† Cost‡
Apache HTTP Server 1, 658, 736 481 $178M
GNU Compiler Collection 9, 991, 490 3, 116 $1, 153M
Android 14, 606, 292 4, 640 $1, 717M
Firefox 28, 049, 384 9, 139 $3, 381M
Chromium 28, 528, 607 9, 275 $3, 432M
Linux Kernel 34, 412, 146 11, 625 $4, 391M

∗ All values were collected from Black Duck Open Hub: https://openhub.net/.
† Represents the amount of time an individual would need to write the specified number of lines of
code during regular working hours.
‡ We employ an average salary of $370K, conform with the wages of senior software engineers
working for Google and Mozilla [leva; levb]. Note that this is a conservative estimate, as it does
not include additional costs such as taxes.

Table 5.1: Estimated development costs of major open-source projects.

to the same issues as the current ones? Here, a well-thought-out architecture
and design of the new browser are paramount, and should be based on the
lessons learned from current issues. But even if this new architecture and design
could seamlessly address all the issues that have been identified and enable a
more straightforward way of comprehensively incorporating existing features
and policies, the ever-evolving nature of the Web presents a persistent challenge.
Much like the developers of the 1990s, the developers of the new browser would
not be able to predict all features that would be incrementally incorporated into
the Web. Furthermore, a policy-centric approach might impede performance
and usability, factors widely regarded as crucial for the success of a browser.

Perhaps solutions can be found in reshaping the very bedrock of the Web
itself: the specifications and standards governing both mechanisms and policies.
Again, however, these long-term solutions would require a significant amount of
resources, in addition the development costs of a browser that is compatible
with these new specifications and standards. On top of that, a collaboration
between a multitude of stakeholders deeply entrenched in the Web’s ecosystem
is vital for this to succeed, spanning from browser vendors on one end to web
services on the other end. This is unlikely to materialize in the near future, due
to a lack of intrinsic motivation. Even with the anticipated transition to Web
3.0, the foundational user-facing elements currently in use, such as HTML, CSS,
and JavaScript, are likely to persist.

The perspective presented above might seem to lean towards a pessimistic view,
given the inability to discern a practical and durable solution to the identified
issues. Indeed, it is probable that without a change of course, the incorporation of
new features will persist as a complex challenge that is prone to errors. However,

https://openhub.net/

122 CONCLUSION

it is equally important to recognize the extensive efforts dedicated to enhancing
the foundational architecture and design of web browsers. For instance, in
Chapter 3, we discussed the centralization of policy logic and enforcement as a
critical step in preventing policy-related bugs. Such a measure was successfully
implemented in Chromium through the Policy Container, effectively addressing
numerous issues related to policy inheritance [Chr20b]. In this context, adopting
a pragmatic stance might be the most realistic approach, as it allows for the
gradual improvement of the current state of affairs. Nevertheless, such efforts do
come with associated costs as well, though less substantial than those depicted
in Table 5.1. For instance, the redevelopment of Firefox for performance
enhancement was estimated to raise development expenses by around 6% that
year [Kei17].

5.3.2 Bug prevention

In both Chapters 2 and 3, we encountered numerous instances of straightforward
bypasses where a single line of code, often involving the use of a specific HTML
element, was sufficient to exploit a bug. In the latter chapter, it became apparent
that one of the most common developer intentions when introducing a bug was
to incorporate new policy functionality or to introduce a new feature. These
oversights reveal that developers did not consistently consider the potential
impact on security policies when introducing new features. This observation
can be attributed, in part, to the limited resources available to development
teams. It is common for security experts to participate primarily in the design
phase of a new feature, while their involvement during the implementation
phase is less consistent. Furthermore, even when a security expert is assigned
to review a new feature, they may not possess comprehensive knowledge of all
the intricacies and edge cases related to the relevant policies. For instance, a
particular security expert could be highly knowledgeable about SOP, but their
familiarity with CSP might be comparatively limited.

With every major browser version, tens to hundreds of new features are
introduced [VJ22]. Consequently, it is impractical to subject each feature to an
extensive security expert review. As such, we contend that, given the necessary
evaluation required to scrutinize all features, investments in automation are
key. In connection with this, in Chapter 3, we identified several bugs that
could have been detected through a simple automated process. For instance,
a straightforward test utilizing the CSP policy default-src ‘none’ could be
applied to every newly introduced feature. In this context, neither requests
should be sent nor scripts executed on the test page. Such a test would have
detected bypasses involving newly introduced features such as <base>, <a>’s
ping attribute, favicon retrieval, form submission and Workers.

THOUGHTS ON DEVELOPMENT AND DEPLOYMENT 123

In a more generalized approach, browser vendors could require security test
cases to be developed for each newly introduced feature, that subject the feature
to the strictest application of security policies. This process for test generation
can be automated to make it accessible to non-security experts. For example,
developers could simply specify various HTML pages with different feature
configurations, which is likely already a part of their development process. The
automated process could then generate test cases by imposing rigorous security
policies on these pages, such as CSP, HTTP Strict Transport Security (HSTS),
or by indicating that the test must be run in a browser with a strict third-party
cookie policy enabled. While these tests may not be exhaustive, they would
serve as a valuable indicator of whether the introduced feature enables a bypass
and would have detected the previously identified straightforward bypasses.
Even though this approach would likely produce false positives, adhering to the
principle of “security by default” is a sound development practice.

5.3.3 Bug handling

As illustrated in Chapter 3, the existing methodology for sharing security
bugs among browser vendors exhibits limitations that can impede a timely
resolution. Despite the push and pull of regression tests to and from the shared
WPT repository, oversights have already prevented either action from occurring.
Moreover, even in the absence of oversights, this approach can result in a
significant delay of several months before the bug is effectively shared.3 To
reduce oversights and expedite the sharing process, an alternative approach
could involve sharing bugs immediately after triage. Additionally, it is worth
noting that regression tests become public from the moment they are pushed to
the WPT repository, which is not ideal for handling security vulnerabilities.

While the adoption of a standardized bug reporting language, as described in
Section 5.2.2, could be a proper long-term solution, it is important to ensure
that the process of translating a report into this language does not impede
the swift sharing of security bugs. Another approach is the direct exchange of
confirmed bug reports or PoCs between browser vendors. This method could
involve granting limited access within the existing bug tracking platforms to
security experts from other vendors. However, this approach relies on a high
level of trust between vendors and may face technical challenges related to
support for access granularity. A more suitable approach could be for browser
vendors to collaborate on a privately shared bug tracking platform, exclusively

3This inefficiency primarily stems from the necessary steps preceding the creation of
a regression test: First, the bug must undergo triage and be assigned to a developer for
resolution. It is only after these steps that a regression test can be created, potentially as
part of a fix.

124 CONCLUSION

accessible to their security experts. This approach aligns with discussions among
security experts from various browsers [Wes23].

A standardized bug reporting language holds potential to enhance the accurate
interpretation of bug reports as well, thereby adressing mislabeling to a certain
degree. However, it falls short in preventing developers from erroneously
classifying bugs as resolved, which can lead to premature public disclosure as
evidenced in Chapter 3. To rectify this issue, vendors should intensify the
enforcement of regression test creation before a bug is marked as fixed. This is
particularly crucial when developers lack information about the revision that
resolved the reported bug. Additionally, identifying the bug introducing revision
would offer valuable insights for both developers and researchers. Tools like
BugHog can play a valuable role in this process, aiding in the identification of the
revisions of interest. Notably, the Chromium team recognizes the importance of
this and offers a bisect bonus if a security bug reporter identifies the introducing
revision [Gooa].

5.3.4 Deployment of browser engines in native applications

Many issues discussed in Chapter 4 arise from the misconfiguration of embedded
browser engines of native applications. One way to mitigate these issues is to
establish a default posture in which, in the absence of explicit configuration
settings, the most secure and privacy-preserving settings are automatically
applied, and sensitive features are disabled. This could involve the disabling
of access to the local file system or the prevention of popup window creation.
While there has been some progress in this direction, as evidenced by Electron’s
online documentation that highlights security best practices [Eleb], there are
still areas where sensitive settings remain enabled by default. For example,
the automatic approval of session permission requests from remotely loaded
content can pose a security risk. This configuration allows web pages loaded
by the renderer to leverage all the permissions associated with the embedded
Chromium engine of Electron [Chre].

However, relying solely on strict default configuration settings may not be
sufficient, as developers can still unintentionally misconfigure the browser engine
to enable intended use cases. As such, in conjunction with a default security
posture, transparency towards developers is essential as well. To achieve this,
developers must be well-informed about the potential security and privacy
implications associated with specific configurations. Additionally, in certain
cases, more fine-grained permissions may be necessary to securely facilitate
intended use cases. For instance, an attacker could attempt to exploit file
system permissions in applications that genuinely require these for their intended

CONCLUDING REMARKS 125

purpose. In such scenarios, a more granular approach might involve requiring
users to grant access to specific resources or features each time the application
requests them, akin to the practice employed by many mobile OSs. This
approach would give users more control over the permissions they grant to
applications, reducing the risk of abuse.

Equally important, if not more, is the need for transparency towards users. It
is imperative to inform users about the security and privacy implications of
applications that embed browser engines, or even software in general. Users
could be empowered by providing a list of applications with security and privacy
benchmarks. This practice is already in place for privacy measures in web
browsers, where users can access privacy test results to evaluate their browser’s
privacy rating [pri]. Likewise, for EPUB reading systems, tests and their
corresponding results that gauge compliance with the W3C’s specifications are
publicly accessible [HL].

5.4 Concluding remarks

The extensive and growing body of research on the implementation flaws of
security and privacy policies serves as compelling evidence that current practices
surrounding browser development leave room for improvement. Since more
durable solutions, such as changing browser architecture and design, demand
substantial time and resources, pragmatic approaches pose more realistic in the
short term. These should be employed to prevent oversights that we consider to
be low-hanging fruit and for which failure to address them cannot be excused
(e.g. one-liner bypasses caused by overlooked HTML elements). Given the
limited resources, we argue that the automation of evaluation processes, for
instance at feature introduction, is a crucial step in the right direction, where
even the most basic measures could prevent numerous identified issues.

Conversely, research on the deployment of browser engines in native applications
remains relatively limited and we hope that our work will encourage further
exploration of this topic. The inclusion of browser engines within native
applications can often be likened to acquiring a Swiss army knife for screwing
in a light bulb, as often only a small subset of the engine’s functionality
is effectively utilized. In light of this, we believe that developing browser
engines explicitly designed for non-browser applications (e.g. by featuring a more
modular architecture) would result in a reduced attack surface, contributing to
a more secure and privacy-preserving use of existing technology.

A
Third-party cookie evaluation

A.1 Test compositions

In this section, we explicate the various test compositions that we have integrated
in our framework. These compositions are shown in Table A.1, together with
the illustrated domains.

ID Test composition
1 −−−−−→

includes

2 −−−−−→
includes

 −−−−−→
includes

3 −−−−−→
includes

 −−−−−→
includes

4 −−−−−→
includes

 −−−−−→
includes

5 −−−−−→
includes

 −−−−−→
includes

 −−−−−→
includes

6 file:// −−−−−→
includes

7 −−−−−→
includes

∗

8 −−−−−→
includes

 −−−−−→
includes

 −−−−−→
includes

 −−−−−→
includes

∗ Iframe constructed through data:text/html.

Table A.1: Test compositions supported by our framework.

127

EXTENSION SET POPULATION 129

A.2 Extension set population

In this section, we present the extension set populations. For the ad tracking
protection extensions, these are shown in Table A.2 and for the ad blocking
extensions in Table A.3. All extensions for Chrome, Opera and Firefox were
selected based on relevant search criteria and a minimum number of users or
downloads (whichever was available). Due to the unavailability of both numbers
for Edge extensions, we selected Edge extensions based on the popularity of
their counterparts for the other browsers. The extension “AdBlocker Lite” takes
up two entries in Table 2.2 and A.3 because we tested its two modes.

130 THIRD-PARTY COOKIE EVALUATION

Se
t

Ex
te

ns
io

n
na

m
e

Ve
rs

io
n

N
um

be
r

of
us

er
s/

do
w

nl
oa

ds
C

hr
om

e
Tr

ac
ki

ng
Pr

ot
ec

tio
n

Ex
te

ns
io

ns
SE

T
B1

Bl
ur

7.
7.

23
90

24
8,

82
5

us
er

s
SE

T
B2

Sc
rip

tS
af

e
1.

0.
9.

1
28

6,
51

2
us

er
s

SE
T

B3
G

ho
st

er
y

7.
4.

1.
4

2,
78

7,
47

3
us

er
s

Pr
iv

ac
y

Ba
dg

er
20

17
.1

1.
20

71
1,

10
2

us
er

s
D

isc
on

ne
ct

5.
18

.2
3

91
8,

87
7

us
er

s
SE

T
B4

uM
at

rix
1.

1.
12

12
1,

61
8

us
er

s
O

pe
ra

Tr
ac

ki
ng

Pr
ot

ec
tio

n
Ex

te
ns

io
ns

SE
T

B5
Bl

ur
:

Pr
ot

ec
t

yo
ur

pa
ss

wo
rd

s,
pa

ym
en

ts
&

pr
iv

ac
y

7.
7.

23
93

15
4,

81
7

do
w

nl
oa

ds
SE

T
B6

D
isc

on
ne

ct
5.

17
.5

56
4,

62
8

do
w

nl
oa

ds
Pr

iv
ac

y
Ba

dg
er

20
17

.1
1.

20
14

0,
38

1
do

w
nl

oa
ds

SE
T

B7
G

ho
st

er
y

7.
4.

3.
1

4,
86

5,
90

0
do

w
nl

oa
ds

Fi
re

fo
x

Tr
ac

ki
ng

Pr
ot

ec
tio

n
Ex

te
ns

io
ns

SE
T

B8
D

uc
kD

uc
kG

o
Pl

us
∗

20
17

.1
1.

30
41

9,
35

1
us

er
s

SE
T

B9
Pr

iv
ac

y
Ba

dg
er

20
17

.1
1.

20
41

1,
40

6
us

er
s

SE
T

B1
0

G
ho

st
er

y
–

Pr
iv

ac
y

A
d

Bl
oc

ke
r

7.
4.

1.
4

1,
04

8,
90

7
us

er
s

SE
T

B1
1

C
liq

z
-S

ch
ne

lls
uc

he
un

d
Tr

ac
ki

ng
sc

hu
tz

2.
21

.3
94

,3
61

us
er

s
Ed

ge
Tr

ac
ki

ng
Pr

ot
ec

tio
n

Ex
te

ns
io

ns
SE

T
B1

2
G

ho
st

er
y

7.
5.

0.
0

N
/A

∗
R

ec
en

tl
y

ch
an

ge
d

it
s

na
m

e
to

“D
uc

kD
uc

kG
o

P
ri

va
cy

E
ss

en
ti

al
s”

.

Table A.2: Population of the tracking protection extension sets.

EXTENSION SET POPULATION 131

Set Extension name Version Number of users/downloads
Chrome Ad Blocking Extensions

SET A1 AdRemover for Google Chrome™ 1.1.1.0 9,463,986 users
Windscribe - Free VPN and Ad Blocker 2.3.4 553,466 users
uBlock 0.9.5.0 519,056 users

SET A2 AdBlocker Ultimate 2.26 628,321 users
Ads Killer 0.99.70 2,262,911 users
Hola ad blocker 1.21.624 143,790 users

SET A3 Fair AdBlocker 1.404 1,808,682 users
SET A4 AdGuard AdBlocker 2.7.2 4,650,713 users
SET A5 AdBlock Pro 4.3 2,134,631 users
SET A6 uBlock Adblocker Plus 2.3 332,645 users

uBlock Origin 1.14.22 10,000,000+ users
uBlock Plus Adblocker 1.5.2 521,915 users

SET A7 AdBlock 3.22.1 10,000,000+ users
Adblock Plus 1.13.4 10,000,000+ users

Opera Ad Blocking Extensions
SET A8 AdBlocker Lite (Lite mode) 0.4.0 164,309 downloads

AdBlock 2.57 11,199,416 downloads
SET A9 AdBlocker Ultimate 2.23 1,209,271 downloads
SET A10 Adblock Fast 1.2.0 465,483 downloads

AdBlocker Lite (Full mode) 0.4.0 164,309 downloads
SET A11 Adguard 2.7.2 5,649,827 downloads
SET A12 ContentBlockHelper 10.2.0 371,330 downloads
SET A13 uBlock origin 1.14.16 3,738,666 downloads
SET A14 Adblock Plus 1.13.4 33,802,382 downloads

Firefox Ad Blocking Extensions
SET A15 AdBlock for Firefox 3.8.0 865,131 users

AdBlocker Ultimate 2.28 448,458 users
SET A16 Adguard AdBlocker 2.7.3 299,462 users
SET A17 uBlock Origin 1.14.18 5,216,321 users
SET A18 Adblock Plus 3.0.1 13,574,386 users

Edge Ad Blocking Extensions
SET A19 AdBlock 2.4.0.0 N/A
SET A20 Adblock Plus 0.9.9.0 N/A
SET A21 Adguard Adblocker 2.8.4 N/A
SET A22 uBlock origin 1.14.24 N/A

Table A.3: Population of the ad blocking extension sets.

BUG REPORTS AND RESPONSES 133

A.3 Bug reports and responses

In this section, we address the bug reports that we filed and their subsequent
responses. Bugs were reported to both browsers (Section A.3.1) and extensions
(Section A.3.2). In order to not inspire any attackers or trackers, we decided
to only file private bug reports. Note that bug threads mights still be private
when visiting the associated link.

A.3.1 Built-in browser protection

[bug1] The bug that can be leveraged to bypass Chrome’s and Opera’s third-
party cookie policy has been confirmed and is scheduled to be fixed at the time
of writing. 1

[bug2] We reported that Safari 10 does not block all third-party cookies
when this option is enabled. At the time of writing, this bug has not yet been
confirmed.2

[bug3] The bug that nullifies Edge’s option to block third-party cookies has
been confirmed.3

[bug4] The bypasses for Opera’s ad blocker have been reported, however, we
were not given access to the bug thread. Instead, we were given an email address
through which we can inquire about the process.

[bug5] In the bug thread that we have started for bypasses concerning Firefox’
tracking protection, references have been made to previously reported similar
bugs that are related to Firefox’ Safe Browsing feature [Mozm].4 For example,
the AppCache API had already been reported to bypass the URL classifier used
by Safe Browsing to signal websites known for phishing or malware. Although
the bug has not yet been officially flagged as confirmed at the time of writing,
there was an intention to fix.

1https://bugs.chromium.org/p/chromium/issues/detail?id=836746
2https://bugs.webkit.org/show_bug.cgi?id=186589
3https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/16512

847
4https://bugzilla.mozilla.org/show_bug.cgi?id=1447935

https://bugs.chromium.org/p/chromium/issues/detail?id=836746
https://bugs.webkit.org/show_bug.cgi?id=186589
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/16512847
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/16512847
https://bugzilla.mozilla.org/show_bug.cgi?id=1447935

134 THIRD-PARTY COOKIE EVALUATION

A.3.2 Extensions

[bug6] This bug permitted cross-site requests, initiated by JavaScript
embedded in a PDF, to bypass the WebExtension API in Chromium-based
browsers. This made it impossible for extensions (e.g. ad blockers and anti-
tracking extensions) to implement a thorough third-party cookie and request
policy. Unfortunately, our bug thread was closed as WontFix,5 because this
functionality was working as intended; requests initiated by an extension
(PDFium) should not be interceptable by other extensions. Thread responses
showed reluctance to treating PDFium differently because it would be costly and
difficult to implement. We mentioned that Opera - a Chromium-based browser
- actually managed to mitigate these requests with its built-in ad blocker, but
also proposed an alternative solution like providing a setting to block execution
of JavaScript embedded in PDFs. Response to our proposition was supportive,
however we are not aware of any progress on the matter. In the same bug report,
we also explained the difficulties for extensions to distinct between requests
initiated through the AppCache or ServiceWorker API, and requests initiated
by browser functionality. However, no responses have been made in regard to
this.

[bug7] We reported that requests for fetching the favicons are not interceptable
through Firefox’ WebExtension API and that requests initiated through the
AppCache API are not easily distinguishable in Firefox. The bug thread was
closed as WontFix,6 because the first issue had already been reported and no
additional effort will be made to fix the deprecated AppCache API.

[bug8] In addition to the aforementioned bugs caused through the AppCache
and WebSocket API, we identified a wide variety of bugs inherent to the
implementation of ad blocking and privacy protection extensions. Because of
the large number of affected extensions, many without a dedicated bug tracker,
we only contacted a selection of them. This selection involved the 11 most
popular and recently updated extensions, most of them supported by multiple
browsers, to which we reached out through a private channel. Unfortunately,
only 5 extension developers responded, of which only 2 pro-actively tried and
succeeded to fix the issue.

5https://bugs.chromium.org/p/chromium/issues/detail?id=824705
6https://bugzilla.mozilla.org/show_bug.cgi?id=1447933

https://bugs.chromium.org/p/chromium/issues/detail?id=824705
https://bugzilla.mozilla.org/show_bug.cgi?id=1447933

BUG REPORTS AND RESPONSES 135

A.3.3 Same-site cookie

[bug9] The prerender bug that we found in Chrome and Opera has been filed
through the Chromium project, where it was confirmed and scheduled to be
fixed.7

[bug10] We have reported the several bypasses that we found for Edge’s
implementation of the same-site cookie policy. This bug report has been
confirmed.8

7https://bugs.chromium.org/p/chromium/issues/detail?id=709946
8https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/18054

323/

https://bugs.chromium.org/p/chromium/issues/detail?id=709946
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/18054323/
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/18054323/

B
Bug report search criteria and
intention labeling

B.1 Bug report search criteria

The search criteria described in the following sections were utilized to collect
reports of bugs related to CSP or caused by CSP. These search criteria are
intentionally overly broad as not to miss potentially relevant bug reports. False
positives were removed manually. Additionally, whenever a discovered report
was linked to another relevant report that was not originally part of our search
results, it was included in our dataset as well. Note that all keywords used in
the search criteria will be checked against the whole bug report, including the
title, description, and comments.

B.1.1 Chromium

• label:
Security_Severity-Low OR
Security_Severity-Medium OR
Security_Severity-High OR
Security_Severity-Critical

• status: NOT WontFix

• (CSP OR Content-Security-Policy)

137

138 BUG REPORT SEARCH CRITERIA AND INTENTION LABELING

URL: https://bugs.chromium.org/p/chromium/issues/list?q=%28la
bel%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-
Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecu
rity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20C
ontent-Security-Policy%29&can=1

B.1.2 Firefox

• Component: DOM: Security

• Resolution: FIXED

• Classification: Client Software, Developer Infrastructure,
Components, Server Software, Other

• Type: defect

• Summary: CSP

URL: https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&s
hort_desc=CSP&classification=Client%20Software&classification=De
veloper%20Infrastructure&classification=Components&classificatio
n=Server%20Software&classification=Other&short_desc_type=allword
ssubstr&query_format=advanced&component=DOM%3A%20Security&resolu
tion=FIXED&list_id=16012294

B.2 Bug report distribution

Table B.1 shows the exact number of valid or available CSP bug reports, how
many of those were reproducible by our framework (with regard to its technical
limitations), and finally how many we were able to effectively reproduce. Note
that this table only elaborates on the number of bug reports found exclusively
through our used search criteria. The total number of reproduced bug reports
amounts to 86 when also taking into account reports found through cross-report
links.

Valid CSP bugs In addition to false positives (e.g. reports that do not describe
a CSP bug, or a bug caused by CSP), several reports missed a PoC due to
an expired external link. These occurrences were regarded as unavailable if
we could not construct a working PoC based on the available description and
comments.

https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=%28label%3ASecurity_Severity-Low%20OR%20label%3ASecurity_Severity-Medium%20OR%20label%3ASecurity_Severity-High%20OR%20label%3ASecurity_Severity-Critical%29%20-status%3AWontFix%20%28CSP%20OR%20Content-Security-Policy%29&can=1
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294
https://bugzilla.mozilla.org/buglist.cgi?bug_type=defect&short_desc=CSP&classification=Client%20Software&classification=Developer%20Infrastructure&classification=Components&classification=Server%20Software&classification=Other&short_desc_type=allwordssubstr&query_format=advanced&component=DOM%3A%20Security&resolution=FIXED&list_id=16012294

REVISION INTENTION LABELS 139

Chromium Firefox
Valid CSP bugs 74 29
In-scope reports 61 25
Reproduced bugs 58 23

82%
95%

86%
92%

Table B.1: Number of bug reports.

In-scope reports Not all relevant bugs were reproducible by our framework,
due to technical limitations:

• The bug is reported for another OS-specific.1

• User interaction is essential for reproducing the bug.
• Console access is required to check exploit success.
• The bug is facilitated by an installed extension.

Reproduced bugs Finally, while all technical requirements were fulfilled, we
were not able to effectively reproduce five in-scope bugs. We believe that this
may be due to an inadequate PoC, an unclear bug description or a limited
understanding of the bug.

B.3 Revision intention labels

In this section, we describe the labeling process and the interpretation of each
revision intention label.

B.3.1 Labeling process

The labeling process followed an iterative approach where a researcher built the
label list by reviewing all revision metadata and assigning the appropriate label
to each revision. A second researcher then independently annotated the same
revisions using the pre-constructed label list. The agreement between the two
researchers was measured using the Cohen’s Kappa coefficient and was found to
be 0.81, indicating a good level of agreement. Any disagreements were resolved
through discussion until all were resolved.

1We found several Chromium bugs reported for iOS. However, since Chromium’s iOS
version is based on the WebKit engine, we did not consider those as valid.

140 BUG REPORT SEARCH CRITERIA AND INTENTION LABELING

B.3.2 Label interpretation

Introduce CSP CSP is supported starting from this revision.

Fix affected CSP bug Intentionally fixes the reported bug.

Fix other CSP bug Fixes the reported CSP bug as an unintentional side
effect of an intentional fix for another CSP bug.

Fix unrelated security bug Fixes the reported CSP bug as an unintentional
side effect of an intentional fix for another non-CSP security bug.

Fix non-security bug Fixes the reported CSP bug as an unintentional side
effect of an intentional fix for a non-security bug.

Enable affected CSP feature Enables the CSP feature that is affected by
the reported CSP bug.

Enable CSP feature Enables a CSP feature that is not affected by the
reported CSP bug.

Enable security feature Enables a non-CSP security feature.

Enable non-security feature Enables a non-security feature.

Update CSP feature Updates a CSP feature that is not affected by the
reported CSP bug.

Update security feature Updates a non-CSP security feature.

Update non-security feature Updates a non-security feature.

Design revision of CSP Modifies the high-level design of the CSP implemen-
tation.

Design revision of other security policy Modifies the high-level design of
another security policy implementation.

Non-security design revision Modifies the high-level design of any other
feature implementation.

C
Additional reading system
information

For measures of completeness and transparency, we provide an overview of
all EPUB reading systems that were considered during our evaluation. We
also included the number of reported users. Unfortunately, this metric is not
available for iOS, so instead the number of ratings can be used as an estimator
of the relative reach of an application. Additionally, we reported on the deduced
embedded browser engine for all reading systems supporting JavaScript. Here,
“OS” indicates that the reading system relies on the engine framework provided
by the operating system, and thus is considered up-to-date. Finally, we also
include the readers that were excluded from our analysis along with the reason.
In total, we considered 92 reading applications on seven platforms (Windows,
Ubuntu, macOS, iOS, Android, Firefox & Chrome extensions) and five stand-
alone physical e-readers.

141

142 ADDITIONAL READING SYSTEM INFORMATION

Reading system Version Rendering engine Release date
Adobe Digital Editions 4.5.10 OS Trident N/A
Bibliovore 2.0.2.0 - -
BookReader 1.6.0.0 - -
Bookviser Reader 6.8.1.0 - -
Calibre 3.40.1 WebKit 538.1 Oct 2014
Calibre 4.3.0 Blink 77 Sep 2019
CoolReader N/A - -
EPUB File Reader 1.5 OS Trident N/A
FBReader 0.12.10 - -
Freda 4.21 - -
Icecream Ebook Reader 5.19 WebKit 538.1 Oct 2014
Liberty 1.0.0.13 - -
MS Edge 44.17763.1.0 EdgeHTML 18.17763 Oct 2018
Nook 1.10.1.15 - -
Overdrive 3.8.0 - -
SumatraPDF 3.1.2 - -

Table C.1: Evaluated EPUB reading systems for Windows

Reading system Reason
Cover Unable to open fully compliant EPUB file.
Epub3 Reader Unable to correctly render fully compliant EPUB file.
FlyReader Unable to open fully compliant EPUB file.
Perfect PDF Reader Unable to correctly render fully compliant EPUB file.

Table C.2: Omitted EPUB reading systems for Windows

Reading system Version Rendering engine Release date
Adobe Digital Editions 4.5.10 OS WebKit N/A
Apple Books 1.17 OS WebKit N/A
Azardi 43.1 Gecko 38 May 2015
BookReader 5.14 OS WebKit N/A
Calibre 3.40.1 WebKit 538.1 Oct 2014
Calibre 4.3.0 Blink 77 Sep 2019
FBReader 0.9.0 - -
Kindle 1.25.2 - -
Kitabu 1.2 OS WebKit N/A
Murasaki 1.0.2 OS WebKit N/A

Table C.3: Evaluated EPUB reading systems for macOS

ADDITIONAL READING SYSTEM INFORMATION 143

Reading system Reason
Kobo for Desktop Unable to side-load EPUBs.

Table C.4: Omitted EPUB reading systems for macOS

Reading system Version Rendering engine Release date
Calibre 3.46 WebKit 538.1 Oct 2014
Calibre 4.3.0 Blink 77 Sep 2019
FBReader 0.12.10 - -
Okular 1.7.2 - -

Table C.5: Evaluated EPUB reading systems for Linux Ubuntu

Reading system Reason
Bookworm Unable to install.
Buka Unable to start.
Cool Reader Unable to start.
Easy eBook Viewer Unable to open fully compliant EPUBs.
GNOME Books Unable to open fully compliant EPUBs.
Lucidor Unable to start.

Table C.6: Omitted EPUB reading systems for Linux Ubuntu

144 ADDITIONAL READING SYSTEM INFORMATION

R
ea

di
ng

sy
st

em
Ve

rs
io

n
La

st
up

da
te

d
N

um
be

r
of

ra
tin

gs
R

en
de

rin
g

en
gi

ne
R

el
ea

se
da

te
A

ld
ik

o
Bo

ok
R

ea
de

r
1.

1.
6

A
ug

10
,2

01
7

51
-

-
A

pp
le

Bo
ok

s
4.

2.
3

Ju
n

3,
20

19
N

/A
O

S
W

eb
K

it
N

/A
Bl

ue
fir

e
R

ea
de

r
2.

9
Ja

n
6,

20
18

2.
5K

-
-

C
H

M
at

e
6.

9.
1

M
ay

22
,2

01
8

13
O

S
W

eb
ki

t
N

/A
Eb

oo
k

R
ea

de
r

4.
0.

9
D

ec
22

,2
01

7
34

5
O

S
W

eb
ki

t
N

/A
eB

oo
x

1.
60

.1
Ju

l1
8,

20
19

11
4

-
-

EP
U

B
R

ea
de

r
5.

1.
55

M
ar

14
,2

01
7

64
7

-
-

FB
R

ea
de

r
1.

0.
10

A
ug

31
,2

01
9

12
-

-
G

er
ty

1.
1.

5
A

ug
8,

20
15

65
O

S
W

eb
ki

t
N

/A
K

ob
o

Bo
ok

s
9.

14
Ju

n
11

,2
01

9
8.

4K
O

S
W

eb
ki

t
N

/A
K

yb
oo

k
3

0.
7.

8
Fe

b
23

,2
01

9
57

9
-

-
M

ar
vi

n
3.

1.
2

O
ct

11
,2

01
7

23
9

O
S

W
eb

ki
t

N
/A

Pl
ay

Bo
ok

s
5.

3.
0

A
ug

26
,2

01
9

8.
3K

-
-

Po
ck

et
Bo

ok
3.

2
A

ug
12

,2
01

9
63

7
O

S
W

eb
ki

t
N

/A
Po

we
r

R
ea

de
r

6.
10

A
ug

28
,2

01
7

4
O

S
W

eb
ki

t
N

/A
R

2
R

ea
de

r
2.

0.
1

Ju
n

21
,2

01
9

5
O

S
W

eb
ki

t
N

/A
To

ta
lR

ea
de

r
5.

1.
61

Ju
l4

,2
01

7
32

9
O

S
W

eb
ki

t
N

/A
Y

iB
oo

k
1.

8.
5

M
ay

13
,2

01
8

4
-

-
Yo

m
u

2.
3.

0
Ju

l1
7,

20
19

59
O

S
W

eb
ki

t
N

/A

Table C.7: Evaluated EPUB reading systems for iOS

ADDITIONAL READING SYSTEM INFORMATION 145

Reading system Version Reason
Kindle 6.24 Unable to side-load EPUBs.
PureReader 1.4.2 Unable to open fully compliant EPUBs.

Table C.8: Omitted EPUB reading systems for iOS

R
ea

di
ng

sy
st

em
Ve

rs
io

n
N

um
be

r
of

do
w

nl
oa

ds
La

st
up

da
te

d
R

en
de

rin
g

en
gi

ne
R

el
ea

se
da

te
4s

ha
re

d
R

ea
de

r
1.

20
.0

1M
+

M
ay

20
19

-
-

A
ld

ik
o

Bo
ok

R
ea

de
r

3.
1.

3
10

M
+

O
ct

20
18

-
-

A
ld

ik
o

C
la

ss
ic

3.
1.

3
50

0K
+

O
ct

20
18

-
-

A
lR

ea
de

r
1.

91
18

05
27

0
5M

+
M

ay
20

18
-

-
Bo

ok
ar

iF
re

e
4.

2.
5

1M
+

Fe
b

20
18

-
-

Bo
ok

R
ea

de
r

1.
12

.1
2

1M
+

Ju
n

20
19

-
-

C
oo

lR
ea

de
r

3.
2.

32
10

M
+

A
ug

20
19

-
-

Eb
oo

k
R

ea
de

r
1.

0
10

K
+

A
ug

20
19

-
-

Eb
oo

k
R

ea
de

r
5.

0.
8.

2
5M

+
Ju

n
20

19
O

S
Bl

in
k

N
/A

EB
oo

k
R

ea
de

r
3.

5.
0

5M
+

Ju
l2

01
9

-
-

eB
oo

x
2.

22
1M

+
A

ug
20

19
-

-
eP

ub
R

ea
de

r
2.

1.
2

1M
+

M
ay

20
15

O
S

Bl
in

k
N

/A
Ep

ub
re

ad
er

4.
0

10
K

+
A

pr
20

19
-

-
Ep

ub
R

ea
de

r
8.

0.
39

10
0K

+
Fe

b
20

19
-

-
EP

U
BR

ea
de

r
1.

0.
32

10
0K

+
N

ov
20

14
O

S
Bl

in
k

N
/A

eR
ea

de
r

Pr
es

tig
io

6.
0.

0.
9

10
M

+
M

ay
20

19
-

-
FB

R
ea

de
r

3.
0.

15
10

M
+

Ju
l2

01
9

-
-

Fr
ed

a
4.

31
10

K
+

M
ar

20
19

-
-

Fu
llR

ea
de

r
4.

1.
4

1M
+

A
ug

20
19

-
-

G
itd

en
R

ea
de

r
4.

5.
3

10
0K

+
Ja

n
20

18
O

S
Bl

in
k

N
/A

G
oo

gl
e

Pl
ay

Bo
ok

s
5.

2.
7

1B
+

A
ug

20
19

-
-

In
fin

ity
R

ea
de

r
1.

7.
57

5K
+

M
ay

20
17

O
S

Bl
in

k
N

/A
iR

ea
de

r
1.

1.
4

5K
+

A
ug

20
19

O
S

Bl
in

k
N

/A
K

in
dl

e
3.

2.
0.

35
10

0M
+

Ju
l2

01
9

-
-

Li
br

er
a

8.
1.

24
2

10
M

+
A

ug
20

19
-

-
Li

t
Pu

b
3.

5.
3

10
0K

+
Ju

n
20

17
O

S
Bl

in
k

N
/A

Li
th

iu
m

0.
21

.1
1M

+
Ja

n
20

19
O

S
Bl

in
k

N
/A

M
oo

n+
R

ea
de

r
5.

1
10

M
+

A
ug

20
19

-
-

Po
ck

et
Bo

ok
3.

21
1M

+
A

ug
20

19
O

S
Bl

in
k

N
/A

R
ea

de
r

FB
2

1.
20

50
K

+
Ju

n
20

19
-

-
R

ea
dE

ra
19

.0
7.

28
5M

+
Ju

n
20

19
-

-
R

ea
sil

y
19

07
d

10
0K

+
Ju

n
20

19
O

S
Bl

in
k

N
/A

So
la

ti
R

ea
de

r
2.

5.
1

10
K

+
Ju

n
20

15
-

-
Su

pr
ea

de
r

3.
2.

30
1M

+
D

ec
20

18
O

S
Bl

in
k

N
/A

To
lin

o
4.

10
.2

10
0K

+
Fe

b
20

19
-

-

Table C.9: Evaluated EPUB reading systems for Android

146 ADDITIONAL READING SYSTEM INFORMATION

Reading system Reason
Adobe Digital Editions Unable to open local EPUBs.
Cloudshelf Unable to open local EPUBs.
Kobo Unable to side-load EPUBs.
SKY Reader Unable to open local EPUBs.

Table C.10: Omitted EPUB reading systems for Android

ADDITIONAL READING SYSTEM INFORMATION 147

R
ea

di
ng

sy
st

em
na

m
e

Ve
rs

io
n

St
or

e
ID

N
um

be
r

of
us

er
s

C
hr

om
e

Eb
oo

k
R

ea
de

r
fo

r
G

oo
gl

e
D

riv
e

1.
0.

7
m

fp
bh

m
cm

ak
fa

ea
jfp

eh
ao

ije
ca

m
le

hp
l

1,
51

3
EP

U
BR

ea
de

r
2.

0.
8

jh
hc

lm
fg

fll
im

lh
ab

jk
gk

ee
bk

bi
ad

flb
13

7,
91

7
EP

U
B

R
EA

D
ER

1.
0.

1
m

bc
gb

bp
om

kk
nd

fb
pi

ep
jim

ak
kb

oc
jg

kh
81

6
eP

U
B

R
ea

de
r

0.
1.

1
dg

ki
bc

ak
fn

hc
ni

ja
ke

ob
jif

gh
ga

nm
oj

n
10

,5
74

eP
U

B
R

ea
de

r
1.

1.
0

fn
pl

kb
hn

de
m

gb
op

kk
pm

pn
fk

lk
hp

hp
ne

g
1,

89
3

Fi
re

fo
x

EP
U

BR
ea

de
r

2.
0.

9
-

15
8,

48
0

eP
U

B
R

ea
de

r
0.

1.
1

-
5,

09
7

eP
U

B
R

ea
de

r
0.

0.
1

-
36

m
yB

oo
k

0.
4.

0
-

43
4

Q
iu

R
ea

de
r

0.
1.

5
-

1,
51

2

Table C.11: Evaluated EPUB reading systems for Chrome and Firefox

Bibliography

[Aca+14] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz. “The Web Never Forgets: Persistent Tracking Mechanisms
in the Wild”. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’14. Scottsdale,
Arizona, USA: Association for Computing Machinery, 2014, pp. 674–
689. isbn: 9781450329576. doi: 10.1145/2660267.2660347. url:
https://doi.org/10.1145/2660267.2660347.

[Ado20] Adobe. Security Updates Available for Adobe Digital Editions |
APSB20-23. Apr. 2020. url: https://helpx.adobe.com/securi
ty/products/Digital-Editions/apsb20-23.html.

[Agg+10] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. “An Analysis
of Private Browsing Modes in Modern Browsers”. In: Proceedings
of the 19th USENIX Conference on Security. USENIX Security’10.
Washington, DC: USENIX Association, 2010, pp. 6–6. isbn: 888-7-
6666-5555-4. url: http://dl.acm.org/citation.cfm?id=19298
20.1929828.

[AH99] L. Adamic and B. A. Huberman. “The nature of markets in the
World Wide Web”. In: (May 1999). url: https://dx.doi.org/10
.2139/ssrn.166108.

[Akh+10] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. “Towards
a Formal Foundation of Web Security”. In: 2010 23rd IEEE
Computer Security Foundations Symposium. 2010, pp. 290–304.
doi: 10.1109/CSF.2010.27.

[Ale+20] N. Alexopoulos, S. M. Habib, S. Schulz, and M. Mühlhäuser. “The
Tip of the Iceberg: On the Merits of Finding Security Bugs”. In:
ACM Trans. Priv. Secur. 24.1 (Sept. 2020). issn: 2471-2566. doi:
10.1145/3406112. url: https://doi.org/10.1145/3406112.

149

https://doi.org/10.1145/2660267.2660347
https://doi.org/10.1145/2660267.2660347
https://helpx.adobe.com/security/products/Digital-Editions/apsb20-23.html
https://helpx.adobe.com/security/products/Digital-Editions/apsb20-23.html
http://dl.acm.org/citation.cfm?id=1929820.1929828
http://dl.acm.org/citation.cfm?id=1929820.1929828
https://dx.doi.org/10.2139/ssrn.166108
https://dx.doi.org/10.2139/ssrn.166108
https://doi.org/10.1109/CSF.2010.27
https://doi.org/10.1145/3406112
https://doi.org/10.1145/3406112

150 BIBLIOGRAPHY

[Ale+22] N. Alexopoulos, M. Brack, J. P. Wagner, T. Grube, and M.
Mühlhäuser. “How Long Do Vulnerabilities Live in the Code? A
Large-Scale Empirical Measurement Study on FOSS Vulnerability
Lifetimes”. In: 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022,
pp. 359–376. isbn: 978-1-939133-31-1. url: https://www.use
nix.org/conference/usenixsecurity22/presentation/alexo
poulos.

[Alt12] A. Alter. “Your E-Book Is Reading You”. In: The Wall Street
Journal (July 19, 2012). url: https://www.wsj.com/article
s/SB10001424052702304870304577490950051438304 (visited on
11/06/2019).

[Ama19] Amazon Kindle Publishing Guidelines. Amazon, 2019. url: http
://kindlegen.s3.amazonaws.com/AmazonKindlePublishingGu
idelines.pdf.

[Anda] Android. Background Execution Limits. url: https://developer
.android.com/about/versions/oreo/background.

[Andb] Android. Open files using storage access framework. url: https:
//developer.android.com/guide/topics/providers/documen
t-provider.

[Andc] Android. WebSettings. url: https://developer.android.com/r
eference/android/webkit/WebSettings.html.

[App03] Apple. Apple Unveils Safari. Jan. 2003. url: https://www.apple
.com/newsroom/2003/01/07Apple-Unveils-Safari/.

[App17] Apple. UIApplication Background Task Notes. 2017. url: https:
//forums.developer.apple.com/thread/85066.

[App20a] Apple. About the security content of iOS 13.1 and iPadOS 13.1.
Feb. 2020. url: https://support.apple.com/en-us/HT210603.

[App20b] Apple. About the security content of iOS 13.2 and iPadOS 13.2.
Apr. 2020. url: https://support.apple.com/en-gb/HT210721.

[App20c] Apple. About the security content of macOS Catalina 10.15. Feb.
2020. url: https://support.apple.com/en-us/HT210634.

[App20d] Apple. About the security content of macOS Catalina 10.15.1,
Security Update 2019-001, and Security Update 2019-006. Apr.
2020. url: https://support.apple.com/en-us/HT210722.

[Asa+12] M. Asaduzzaman, M. C. Bullock, C. K. Roy, and K. A. Schneider.
“Bug introducing changes: A case study with Android”. In: 2012
9th IEEE Working Conference on Mining Software Repositories
(MSR). 2012, pp. 116–119. doi: 10.1109/MSR.2012.6224267.

https://www.usenix.org/conference/usenixsecurity22/presentation/alexopoulos
https://www.usenix.org/conference/usenixsecurity22/presentation/alexopoulos
https://www.usenix.org/conference/usenixsecurity22/presentation/alexopoulos
https://www.wsj.com/articles/SB10001424052702304870304577490950051438304
https://www.wsj.com/articles/SB10001424052702304870304577490950051438304
http://kindlegen.s3.amazonaws.com/AmazonKindlePublishingGuidelines.pdf
http://kindlegen.s3.amazonaws.com/AmazonKindlePublishingGuidelines.pdf
http://kindlegen.s3.amazonaws.com/AmazonKindlePublishingGuidelines.pdf
https://developer.android.com/about/versions/oreo/background
https://developer.android.com/about/versions/oreo/background
https://developer.android.com/guide/topics/providers/document-provider
https://developer.android.com/guide/topics/providers/document-provider
https://developer.android.com/guide/topics/providers/document-provider
https://developer.android.com/reference/android/webkit/WebSettings.html
https://developer.android.com/reference/android/webkit/WebSettings.html
https://www.apple.com/newsroom/2003/01/07Apple-Unveils-Safari/
https://www.apple.com/newsroom/2003/01/07Apple-Unveils-Safari/
https://forums.developer.apple.com/thread/85066
https://forums.developer.apple.com/thread/85066
https://support.apple.com/en-us/HT210603
https://support.apple.com/en-gb/HT210721
https://support.apple.com/en-us/HT210634
https://support.apple.com/en-us/HT210722
https://doi.org/10.1109/MSR.2012.6224267

BIBLIOGRAPHY 151

[Aut17] AuthorEarnings. February 2017 Big, Bad, Wide & International
Report: covering Amazon, Apple, B&N, and Kobo ebook sales in
the US, UK, Canada, Australia, and New Zealand. 2017. url:
https://web.archive.org/web/20190218084936/http:/autho
rearnings.com/report/february-2017/.

[Aye+11] M. Ayenson, D. Wambach, A. Soltani, N. Good, and C. Hoofnagle.
“Flash cookies and privacy II: Now with HTML5 and ETag
respawning”. In: (2011).

[Bal12a] Baldur Bjarnason. EPUB javascript security. July 2012. url: http
s://www.baldurbjarnason.com/notes/epub-javascript-secu
rity/.

[Bal12b] Baldur Bjarnason. Javascript in ebooks. Feb. 2012. url: https://w
ww.baldurbjarnason.com/notes/javascript-in-ebooks/.

[Ban+14] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis.
“Discovering concrete attacks on website authorization by formal
analysis”. In: Journal of Computer Security 22.4 (2014), pp. 601–
657.

[Ban20] D. Bannister. “Facebook pays out $25k bug bounty for chained
DOM-based XSS”. In: (Nov. 2020). url: https://portswigger.n
et/daily-swig/facebook-pays-out-25k-bug-bounty-for-cha
ined-dom-based-xss.

[Bao+22] L. Bao, X. Xia, A. E. Hassan, and X. Yang. “V-SZZ: Automatic
Identification of Version Ranges Affected by CVE Vulnerabilities”.
In: Proceedings of the 44th International Conference on Software
Engineering. ICSE ’22. Pittsburgh, Pennsylvania: Association for
Computing Machinery, 2022, pp. 2352–2364. isbn: 9781450392211.
doi: 10.1145/3510003.3510113. url: https://doi.org/10.114
5/3510003.3510113.

[Bar11a] A. Barth. HTTP State Management Mechanism. RFC 6265. RFC
Editor, Apr. 2011, pp. 1–37. url: https://tools.ietf.org/htm
l/rfc6265.

[Bar11b] A. Barth. The Web Origin Concept. Dec. 2011. doi: 10.17487
/RFC6454. url: https://www.rfc-editor.org/info/rfc6454.

[Bar13] A. Barth. Blink: A rendering engine for the Chromium project. Apr.
2013. url: https://blog.chromium.org/2013/04/blink-rende
ring-engine-for-chromium.html.

https://web.archive.org/web/20190218084936/http:/authorearnings.com/report/february-2017/
https://web.archive.org/web/20190218084936/http:/authorearnings.com/report/february-2017/
https://www.baldurbjarnason.com/notes/epub-javascript-security/
https://www.baldurbjarnason.com/notes/epub-javascript-security/
https://www.baldurbjarnason.com/notes/epub-javascript-security/
https://www.baldurbjarnason.com/notes/javascript-in-ebooks/
https://www.baldurbjarnason.com/notes/javascript-in-ebooks/
https://portswigger.net/daily-swig/facebook-pays-out-25k-bug-bounty-for-chained-dom-based-xss
https://portswigger.net/daily-swig/facebook-pays-out-25k-bug-bounty-for-chained-dom-based-xss
https://portswigger.net/daily-swig/facebook-pays-out-25k-bug-bounty-for-chained-dom-based-xss
https://doi.org/10.1145/3510003.3510113
https://doi.org/10.1145/3510003.3510113
https://doi.org/10.1145/3510003.3510113
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://doi.org/10.17487/RFC6454
https://doi.org/10.17487/RFC6454
https://www.rfc-editor.org/info/rfc6454
https://blog.chromium.org/2013/04/blink-rendering-engine-for-chromium.html
https://blog.chromium.org/2013/04/blink-rendering-engine-for-chromium.html

152 BIBLIOGRAPHY

[Bas+18] M. A. Bashir, S. Arshad, E. Kirda, W. Robertson, and C.
Wilson. “How Tracking Companies Circumvented Ad Blockers
Using WebSockets”. In: Proceedings of the Internet Measurement
Conference 2018. IMC ’18. Boston, MA, USA: Association for
Computing Machinery, 2018, pp. 471–477. isbn: 9781450356190.
doi: 10.1145/3278532.3278573. url: https://doi.org/10.114
5/3278532.3278573.

[BB07] A. Bortz and D. Boneh. “Exposing Private Information by Timing
Web Applications”. In: Proceedings of the 16th International
Conference on World Wide Web. WWW ’07. Banff, Alberta, Canada:
ACM, 2007, pp. 621–628. isbn: 978-1-59593-654-7. doi: 10.1145
/1242572.1242656. url: http://doi.acm.org/10.1145/124257
2.1242656.

[BBB16] M. di Biase, M. Bruntink, and A. Bacchelli. “A Security Perspective
on Code Review: The Case of Chromium”. In: 2016 IEEE 16th
International Working Conference on Source Code Analysis and
Manipulation (SCAM). 2016, pp. 21–30. doi: 10.1109/SCAM.2016
.30.

[Ber92] T. Berners-Lee. “The world-wide web”. In: Computer Networks
and ISDN Systems 25.4 (1992), pp. 454–459. issn: 0169-7552. doi:
https : / / doi . org / 10 . 1016 / 0169 - 7552(92) 90039 - S. url:
https://www.sciencedirect.com/science/article/pii/0169
75529290039S.

[Ber96] T. Berners-Lee. “WWW: past, present, and future”. In: Computer
29.10 (Oct. 1996), pp. 69–77. doi: 10.1109/2.539724. url: https
://doi.org/10.1109/2.539724.

[BJM08] A. Barth, C. Jackson, and J. C. Mitchell. “Robust Defenses for
Cross-site Request Forgery”. In: Proceedings of the 15th ACM
Conference on Computer and Communications Security. CCS ’08.
Alexandria, Virginia, USA: ACM, 2008, pp. 75–88. isbn: 978-1-
59593-810-7. doi: 10.1145/1455770.1455782. url: http://doi
.acm.org/10.1145/1455770.1455782.

[Boe81] B. W. Boehm. Software engineering economics. Prentice-Hall, Inc.,
1981.

[Boo15] A. Boodman. How Chromium Works. Sept. 2015. url: https://a
boodman.medium.com/in-march-2011-i-drafted-an-article-
explaining-how-the-team-responsible-for-google-chrome-
ships-c479ba623a1b.

https://doi.org/10.1145/3278532.3278573
https://doi.org/10.1145/3278532.3278573
https://doi.org/10.1145/3278532.3278573
https://doi.org/10.1145/1242572.1242656
https://doi.org/10.1145/1242572.1242656
http://doi.acm.org/10.1145/1242572.1242656
http://doi.acm.org/10.1145/1242572.1242656
https://doi.org/10.1109/SCAM.2016.30
https://doi.org/10.1109/SCAM.2016.30
https://doi.org/https://doi.org/10.1016/0169-7552(92)90039-S
https://www.sciencedirect.com/science/article/pii/016975529290039S
https://www.sciencedirect.com/science/article/pii/016975529290039S
https://doi.org/10.1109/2.539724
https://doi.org/10.1109/2.539724
https://doi.org/10.1109/2.539724
https://doi.org/10.1145/1455770.1455782
http://doi.acm.org/10.1145/1455770.1455782
http://doi.acm.org/10.1145/1455770.1455782
https://aboodman.medium.com/in-march-2011-i-drafted-an-article-explaining-how-the-team-responsible-for-google-chrome-ships-c479ba623a1b
https://aboodman.medium.com/in-march-2011-i-drafted-an-article-explaining-how-the-team-responsible-for-google-chrome-ships-c479ba623a1b
https://aboodman.medium.com/in-march-2011-i-drafted-an-article-explaining-how-the-team-responsible-for-google-chrome-ships-c479ba623a1b
https://aboodman.medium.com/in-march-2011-i-drafted-an-article-explaining-how-the-team-responsible-for-google-chrome-ships-c479ba623a1b

BIBLIOGRAPHY 153

[Bos+19] H. Boström, C. Jennings, A. Narayanan, J.-I. Bruaroey, D. Burnett,
A. Bergkvist, and B. Aboba. Media Capture and Streams. Candidate
Recommendation. W3C, July 2019. url: https://www.w3.org
/TR/2019/CR-mediacapture-streams-20190702/.

[Bra+22a] L. Braz, C. Aeberhard, G. Calikli, and A. Bacchelli. “Less is
More: Supporting Developers in Vulnerability Detection during
Code Review”. In: 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE
Computer Society, May 2022, pp. 1317–1329. doi: 10.1145/3510
003.3511560. url: https://doi.ieeecomputersociety.org/10
.1145/3510003.3511560.

[Bra+22b] L. Braz, E. Fregnan, V. Arora, and A. Bacchelli. An Exploratory
Study on Regression Vulnerabilities. 2022. doi: 10.48550/ARXIV.2
207.01942. url: https://arxiv.org/abs/2207.01942.

[BS12] R. Brandis and L. Steller. Threat Modelling Adobe PDF. Tech. rep.
Defence Science and Technology Organisation, Aug. 2012. url:
https://www.dst.defence.gov.au/sites/default/files/pub
lications/documents/DSTO-TR-2730.pdf.

[BSA95] A. Berg (Writer), J. Schaffer (Writer), and A. Ackerman (Direc-
tor). Seinfeld. Season 6, Episode 20: The Doodle. West-Shapiro
Productions and Castle Rock Entertainment, Apr. 1995.

[Bug13] Bugzilla. 945222 - web-platform-tests: Create a test runner for
web-platform-tests suite. Dec. 2013. url: https://bugzilla.mozi
lla.org/show_bug.cgi?id=945222.

[Bug16] BugReplay. Pornhub Bypasses Ad Blockers With WebSockets. 2016.
url: https://medium.com/thebugreport/pornhub-bypasses-a
d-blockers-with-websockets-cedab35a8323.

[Bug22] Bugzilla. Put sameSite=lax, sameSite noneRequiresSecure, and
sameSite schemeful behind the early beta flag. Jan. 2022. url: htt
ps://bugzilla.mozilla.org/show_bug.cgi?id=1751435.

[BWW23] S. Bingler, M. West, and J. Wilander. Cookies: HTTP State Man-
agement Mechanism. Internet-Draft draft-ietf-httpbis-rfc6265bis-12.
Work in Progress. Internet Engineering Task Force, May 2023. 66 pp.
url: https://datatracker.ietf.org/doc/draft-ietf-httpbi
s-rfc6265bis/12/.

[Cal+20] S. Calzavara, S. Roth, A. Rabitti, M. Backes, and B. Stock. “A Tale
of Two Headers: A Formal Analysis of Inconsistent Click-Jacking
Protection on the Web”. In: 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp. 683–

https://www.w3.org/TR/2019/CR-mediacapture-streams-20190702/
https://www.w3.org/TR/2019/CR-mediacapture-streams-20190702/
https://doi.org/10.1145/3510003.3511560
https://doi.org/10.1145/3510003.3511560
https://doi.ieeecomputersociety.org/10.1145/3510003.3511560
https://doi.ieeecomputersociety.org/10.1145/3510003.3511560
https://doi.org/10.48550/ARXIV.2207.01942
https://doi.org/10.48550/ARXIV.2207.01942
https://arxiv.org/abs/2207.01942
https://www.dst.defence.gov.au/sites/default/files/publications/documents/DSTO-TR-2730.pdf
https://www.dst.defence.gov.au/sites/default/files/publications/documents/DSTO-TR-2730.pdf
https://bugzilla.mozilla.org/show_bug.cgi?id=945222
https://bugzilla.mozilla.org/show_bug.cgi?id=945222
https://medium.com/thebugreport/pornhub-bypasses-ad-blockers-with-websockets-cedab35a8323
https://medium.com/thebugreport/pornhub-bypasses-ad-blockers-with-websockets-cedab35a8323
https://bugzilla.mozilla.org/show_bug.cgi?id=1751435
https://bugzilla.mozilla.org/show_bug.cgi?id=1751435
https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/12/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-rfc6265bis/12/

154 BIBLIOGRAPHY

697. isbn: 978-1-939133-17-5. url: https://www.usenix.org/con
ference/usenixsecurity20/presentation/calzavara.

[CERa] CERN. Restoring the first website. url: https://first-website
.web.cern.ch/first-website/.

[CERb] CERN. The birth of the Web. url: https://home.web.cern.ch
/science/computing/birth-web/short-history-web.

[CG19] D. Cramer and M. Garrish. EPUB Content Documents 3.2.
Standard. W3C, May 2019. url: https://www.w3.org/publ
ishing/epub3/epub-contentdocs.html.

[Cha22] A. Chavez. Expanding testing for the Privacy Sandbox for the Web.
July 2022. url: https://blog.google/products/chrome/updat
e-testing-privacy-sandbox-web/.

[Chra] Chrome. Declare Permissions and Warn Users. url: https://dev
eloper.chrome.com/extensions/permission_warnings.

[Chrb] Chromium. bisect-builds.py. url: https://www.chromium.org/de
velopers/bisect-builds-py/.

[Chrc] Chromium. Reporting Security Bugs. url: https://www.chromiu
m.org/Home/chromium-security/reporting-security-bugs/.

[Chrd] Chromium. Testing and infrastructure. url: https://www.chromi
um.org/developers/testing/.

[Chre] Chromium for Developers. Permissions list. url: https://develo
per.chrome.com/docs/extensions/mv3/declare_permissions
/#permissions.

[Chrf] Chromium Projects. Developer FAQ - Why Blink? url: https://w
ww.chromium.org/blink/developer-faq/.

[Chr11] Chromium. Chrome Prerendering. 2011. url: https://www.chrom
ium.org/developers/design-documents/prerender.

[Chr12a] Chromium. chrome.webRequest.onBeforeRequest doesn’t intercept
WebSocket requests. 2012. url: https://bugs.chromium.org/p/c
hromium/issues/detail?id=129353.

[Chr12b] Chromium. Revision 165317: introduction of CSP 1.0. Nov. 2012.
url: https://chromium.googlesource.com/chromium/src/+/4
6dd3610caa75097ba521f7f74e5f5c0d7c23b79.

[Chr14] Chromium. Issue 413454: We should be able to import the w3c test
suites directly into blink (checking them in). Sept. 2014. url: https:
//bugs.chromium.org/p/chromium/issues/detail?id=413454.

[Chr20a] Chromium. Issue 1115628: Security: Full CSP bypass through blob:
URIs. Aug. 2020. url: https://bugs.chromium.org/p/chromium
/issues/detail?id=1115628.

https://www.usenix.org/conference/usenixsecurity20/presentation/calzavara
https://www.usenix.org/conference/usenixsecurity20/presentation/calzavara
https://first-website.web.cern.ch/first-website/
https://first-website.web.cern.ch/first-website/
https://home.web.cern.ch/science/computing/birth-web/short-history-web
https://home.web.cern.ch/science/computing/birth-web/short-history-web
https://www.w3.org/publishing/epub3/epub-contentdocs.html
https://www.w3.org/publishing/epub3/epub-contentdocs.html
https://blog.google/products/chrome/update-testing-privacy-sandbox-web/
https://blog.google/products/chrome/update-testing-privacy-sandbox-web/
https://developer.chrome.com/extensions/permission_warnings
https://developer.chrome.com/extensions/permission_warnings
https://www.chromium.org/developers/bisect-builds-py/
https://www.chromium.org/developers/bisect-builds-py/
https://www.chromium.org/Home/chromium-security/reporting-security-bugs/
https://www.chromium.org/Home/chromium-security/reporting-security-bugs/
https://www.chromium.org/developers/testing/
https://www.chromium.org/developers/testing/
https://developer.chrome.com/docs/extensions/mv3/declare_permissions/#permissions
https://developer.chrome.com/docs/extensions/mv3/declare_permissions/#permissions
https://developer.chrome.com/docs/extensions/mv3/declare_permissions/#permissions
https://www.chromium.org/blink/developer-faq/
https://www.chromium.org/blink/developer-faq/
https://www.chromium.org/developers/design-documents/prerender
https://www.chromium.org/developers/design-documents/prerender
https://bugs.chromium.org/p/chromium/issues/detail?id=129353
https://bugs.chromium.org/p/chromium/issues/detail?id=129353
https://chromium.googlesource.com/chromium/src/+/46dd3610caa75097ba521f7f74e5f5c0d7c23b79
https://chromium.googlesource.com/chromium/src/+/46dd3610caa75097ba521f7f74e5f5c0d7c23b79
https://bugs.chromium.org/p/chromium/issues/detail?id=413454
https://bugs.chromium.org/p/chromium/issues/detail?id=413454
https://bugs.chromium.org/p/chromium/issues/detail?id=1115628
https://bugs.chromium.org/p/chromium/issues/detail?id=1115628

BIBLIOGRAPHY 155

[Chr20b] Chromium. Issue 1149272: Add Content Security Policies to the
Policy Container. Nov. 2020. url: https://bugs.chromium.org
/p/chromium/issues/detail?id=1149272.

[CM07] S. Christey and R. A. Martin. “Vulnerability Type Distributions in
CVE”. In: (May 2007). url: https://cwe.mitre.org/documents
/vuln-trends/index.html.

[CMN15] F. Camilo, A. Meneely, and M. Nagappan. “Do Bugs Foreshadow
Vulnerabilities? A Study of the Chromium Project”. In: Proceedings
of the 12th Working Conference on Mining Software Repositories.
MSR ’15. Florence, Italy: IEEE Press, 2015, pp. 269–279. isbn:
9780769555942.

[com11] comScore. The Impact of Cookie Deletion on Site-Server and Ad-
Server Metrics in Australia. Jan. 2011.

[Con20] M. Conca. Changes to SameSite Cookie Behavior – A Call to Action
for Web Developers. Aug. 2020. url: https://hacks.mozilla.or
g/2020/08/changes-to-samesite-cookie-behavior/.

[CRB16] S. Calzavara, A. Rabitti, and M. Bugliesi. “Content Security
Problems? Evaluating the Effectiveness of Content Security Policy
in the Wild”. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’16. Vienna,
Austria: Association for Computing Machinery, 2016, pp. 1365–1375.
isbn: 9781450341394. doi: 10.1145/2976749.2978338. url: http
s://doi.org/10.1145/2976749.2978338.

[CRB18] S. Calzavara, A. Rabitti, and M. Bugliesi. “Semantics-Based
Analysis of Content Security Policy Deployment”. In: ACM Trans.
Web 12.2 (Jan. 2018). issn: 1559-1131. doi: 10.1145/3149408. url:
https://doi.org/10.1145/3149408.

[CSS10] A. Castiglione, A. D. Santis, and C. Soriente. “Security and privacy
issues in the Portable Document Format”. In: Journal of Systems
and Software 83.10 (2010), pp. 1813–1822. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2010.04.062. url: http://w
ww.sciencedirect.com/science/article/pii/S016412121000
1287.

[Cui18] A. Cui. The Overlooked Problem of ‘N-Day’ Vulnerabilities. Dark
Reading, Mar. 2018. url: https://www.darkreading.com/vuln
erabilities---threats/the-overlooked-problem-of-n-day-
vulnerabilities/a/d-id/1331348.

[Cur19] Cure53. HTTPLeaks. GitHub, 2019. url: https://github.com/c
ure53/HTTPLeaks.

https://bugs.chromium.org/p/chromium/issues/detail?id=1149272
https://bugs.chromium.org/p/chromium/issues/detail?id=1149272
https://cwe.mitre.org/documents/vuln-trends/index.html
https://cwe.mitre.org/documents/vuln-trends/index.html
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior/
https://hacks.mozilla.org/2020/08/changes-to-samesite-cookie-behavior/
https://doi.org/10.1145/2976749.2978338
https://doi.org/10.1145/2976749.2978338
https://doi.org/10.1145/2976749.2978338
https://doi.org/10.1145/3149408
https://doi.org/10.1145/3149408
https://doi.org/https://doi.org/10.1016/j.jss.2010.04.062
http://www.sciencedirect.com/science/article/pii/S0164121210001287
http://www.sciencedirect.com/science/article/pii/S0164121210001287
http://www.sciencedirect.com/science/article/pii/S0164121210001287
https://www.darkreading.com/vulnerabilities---threats/the-overlooked-problem-of-n-day-vulnerabilities/a/d-id/1331348
https://www.darkreading.com/vulnerabilities---threats/the-overlooked-problem-of-n-day-vulnerabilities/a/d-id/1331348
https://www.darkreading.com/vulnerabilities---threats/the-overlooked-problem-of-n-day-vulnerabilities/a/d-id/1331348
https://github.com/cure53/HTTPLeaks
https://github.com/cure53/HTTPLeaks

156 BIBLIOGRAPHY

[CVE] CVE Details. QT 5.2.1 Security Vulnerabilities. url: https://www
.cvedetails.com/vulnerability-list/vendor_id-12593/pro
duct_id-24410/version_id-164958/Digia-QT-5.2.1.html.

[Dam+22] S. Dambra, I. Sanchez-Rola, L. Bilge, and D. Balzarotti. “When
Sally Met Trackers: Web Tracking From the Users’ Perspective”. In:
31st USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, Aug. 2022, pp. 2189–2206. isbn: 978-1-
939133-31-1. url: https://www.usenix.org/conference/useni
xsecurity22/presentation/dambra.

[Dem00] L. Dembart. “U.S. Removes an Encryption Barrier”. In: (Jan. 2000).
url: https://www.nytimes.com/2000/01/31/business/worldb
usiness/IHT-us-removes-an-encryption-barrier.html.

[DG19] M. Day and J. Gu. The Enormous Numbers Behind Amazon’s
Market Reach. Mar. 2019. url: https://www.bloomberg.com/gr
aphics/2019-amazon-reach-across-markets/.

[Dig17] Digimarc. Inside the Mind of a Book Pirate. 2017. url: https://w
ww.digimarc.com/docs/default-source/default-document-l
ibrary/inside-the-mind-of-a-book-pirate.

[Dim+21] Y. Dimova, G. Acar, L. Olejnik, W. Joosen, and T. Van Goethem.
“The cname of the game: Large-scale analysis of dns-based tracking
evasion”. In: 2021, pp. 394–412. url: https://doi.org/10.2478
/popets-2021-0053.

[Dim+22] Y. Dimova, G. Franken, V. Le Pochat, W. Joosen, and L. Desmet.
“Tracking the Evolution of Cookie-Based Tracking on Facebook”.
In: WPES’22. Los Angeles, CA, USA: Association for Computing
Machinery, 2022, pp. 181–196. isbn: 9781450398732. doi: 10.1145
/3559613.3563200. url: https://doi.org/10.1145/3559613.3
563200.

[Din+21] S. T. Dinh, H. Cho, K. Martin, A. Oest, K. Zeng, A. Kapravelos,
G.-J. Ahn, T. Bao, R. Wang, A. Doupé, et al. “Favocado: Fuzzing
the Binding Code of JavaScript Engines Using Semantically Correct
Test Cases.” In: NDSS. 2021.

[DL07] W. Diffie and S. Landau. “26 - The export of cryptography in
the 20th and the 21st centuries”. In: The History of Information
Security. Ed. by K. D. Leeuw and J. Bergstra. Amsterdam: Elsevier
Science B.V., 2007, pp. 725–736. isbn: 978-0-444-51608-4. doi:
https://doi.org/10.1016/B978-044451608-4/50027-4. url:
https://www.sciencedirect.com/science/article/pii/B978
0444516084500274.

https://www.cvedetails.com/vulnerability-list/vendor_id-12593/product_id-24410/version_id-164958/Digia-QT-5.2.1.html
https://www.cvedetails.com/vulnerability-list/vendor_id-12593/product_id-24410/version_id-164958/Digia-QT-5.2.1.html
https://www.cvedetails.com/vulnerability-list/vendor_id-12593/product_id-24410/version_id-164958/Digia-QT-5.2.1.html
https://www.usenix.org/conference/usenixsecurity22/presentation/dambra
https://www.usenix.org/conference/usenixsecurity22/presentation/dambra
https://www.nytimes.com/2000/01/31/business/worldbusiness/IHT-us-removes-an-encryption-barrier.html
https://www.nytimes.com/2000/01/31/business/worldbusiness/IHT-us-removes-an-encryption-barrier.html
https://www.bloomberg.com/graphics/2019-amazon-reach-across-markets/
https://www.bloomberg.com/graphics/2019-amazon-reach-across-markets/
https://www.digimarc.com/docs/default-source/default-document-library/inside-the-mind-of-a-book-pirate
https://www.digimarc.com/docs/default-source/default-document-library/inside-the-mind-of-a-book-pirate
https://www.digimarc.com/docs/default-source/default-document-library/inside-the-mind-of-a-book-pirate
https://doi.org/10.2478/popets-2021-0053
https://doi.org/10.2478/popets-2021-0053
https://doi.org/10.1145/3559613.3563200
https://doi.org/10.1145/3559613.3563200
https://doi.org/10.1145/3559613.3563200
https://doi.org/10.1145/3559613.3563200
https://doi.org/https://doi.org/10.1016/B978-044451608-4/50027-4
https://www.sciencedirect.com/science/article/pii/B9780444516084500274
https://www.sciencedirect.com/science/article/pii/B9780444516084500274

BIBLIOGRAPHY 157

[DMZ10] M. Duerst, L. Masinter, and J. Zawinski. The ’mailto’ URI Scheme.
RFC 6068. RFC Editor, Oct. 2010. url: https://tools.ietf.or
g/html/rfc6068.

[DS92] Dr. Dre and Snoop Dogg. Nuthin’ but a “G” Thang. Death Row,
Interscope, and Priority, Nov. 1992.

[EC12] N. Edwards and L. Chen. “An Historical Examination of Open
Source Releases and Their Vulnerabilities”. In: Proceedings of the
2012 ACM Conference on Computer and Communications Security.
CCS ’12. Raleigh, North Carolina, USA: Association for Computing
Machinery, 2012, pp. 183–194. isbn: 9781450316514. doi: 10.1145
/2382196.2382218. url: https://doi.org/10.1145/2382196.2
382218.

[Eck10] P. Eckersley. “How Unique is Your Web Browser?” In: Proceedings
of the 10th International Conference on Privacy Enhancing
Technologies. PETS’10. Berlin, Germany: Springer-Verlag, 2010,
pp. 1–18. isbn: 3-642-14526-4, 978-3-642-14526-1. url: http://dl
.acm.org/citation.cfm?id=1881151.1881152.

[Elea] Electron. Electron Releases. url: https://www.electronjs.org
/docs/latest/tutorial/electron-timelines.

[Eleb] Electron. Security. url: https://www.electronjs.org/docs/la
test/tutorial/security.

[EN16] S. Englehardt and A. Narayanan. “Online Tracking: A 1-million-
site Measurement and Analysis”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security.
CCS ’16. Vienna, Austria: ACM, 2016, pp. 1388–1401. isbn: 978-1-
4503-4139-4. doi: 10.1145/2976749.2978313. url: http://doi
.acm.org/10.1145/2976749.2978313.

[Eri13] Eric Hellman. Publishing Hackathon Pretty Much Ignores eBooks.
2013. url: https://go-to-hellman.blogspot.com/2013/05/pu
blishing-hackathon-pretty-much.html.

[FAW13] M. Finifter, D. Akhawe, and D. Wagner. “An Empirical Study
of Vulnerability Rewards Programs”. In: 22nd USENIX Security
Symposium (USENIX Security 13). Washington, D.C.: USENIX
Association, Aug. 2013, pp. 273–288. isbn: 978-1-931971-03-4. url:
https://www.usenix.org/conference/usenixsecurity13/tec
hnical-sessions/presentation/finifter.

[Fie+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC
2616. RFC Editor, June 1999, pp. 1–37. url: https://tools.iet
f.org/html/rfc2616.

https://tools.ietf.org/html/rfc6068
https://tools.ietf.org/html/rfc6068
https://doi.org/10.1145/2382196.2382218
https://doi.org/10.1145/2382196.2382218
https://doi.org/10.1145/2382196.2382218
https://doi.org/10.1145/2382196.2382218
http://dl.acm.org/citation.cfm?id=1881151.1881152
http://dl.acm.org/citation.cfm?id=1881151.1881152
https://www.electronjs.org/docs/latest/tutorial/electron-timelines
https://www.electronjs.org/docs/latest/tutorial/electron-timelines
https://www.electronjs.org/docs/latest/tutorial/security
https://www.electronjs.org/docs/latest/tutorial/security
https://doi.org/10.1145/2976749.2978313
http://doi.acm.org/10.1145/2976749.2978313
http://doi.acm.org/10.1145/2976749.2978313
https://go-to-hellman.blogspot.com/2013/05/publishing-hackathon-pretty-much.html
https://go-to-hellman.blogspot.com/2013/05/publishing-hackathon-pretty-much.html
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/finifter
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/finifter
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616

158 BIBLIOGRAPHY

[Fira] Firefox Source Docs. How To Contribute Code To Firefox. url:
https://firefox-source-docs.mozilla.org/setup/contribu
ting_code.html.

[Firb] Firefox Source Docs. Mochitest. url: https://firefox-source-
docs.mozilla.org/testing/mochitest-plain/index.html.

[Fir13] Firefox. Revision 144546: introduction of CSP 1.0. Sept. 2013. url:
https://hg.mozilla.org/releases/mozilla-release/rev/6b
181afc9fadbd4bb9d04648aa24a34bd9731e82.

[FKS16] D. Fett, R. Küsters, and G. Schmitz. “A Comprehensive Formal
Security Analysis of OAuth 2.0”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security.
CCS ’16. Vienna, Austria: Association for Computing Machinery,
2016, pp. 1204–1215. isbn: 9781450341394. doi: 10.1145/2976749
.2978385. url: https://doi.org/10.1145/2976749.2978385.

[FKS17] D. Fett, R. Küsters, and G. Schmitz. “The Web SSO Standard
OpenID Connect: In-depth Formal Security Analysis and Security
Guidelines”. In: 2017 IEEE 30th Computer Security Foundations
Symposium (CSF). 2017, pp. 189–202. doi: 10.1109/CSF.2017.20.

[Flo14] A. Flood. “Ebooks can tell which novels you didn’t finish”. In: The
Guardian (Dec. 10, 2014). url: https://www.theguardian.com
/books/2014/dec/10/kobo-survey-books-readers-finish-do
nna-tartt (visited on 11/06/2019).

[Fra+23] G. Franken, T. Van Goethem, L. Desmet, and W. Joosen. “A Bug’s
Life: Analyzing the Lifecycle and Mitigation Process of Content
Security Policy Bugs”. In: 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association, Aug.
2023, pp. 3673–3690. isbn: 978-1-939133-37-3. url: https://www
.usenix.org/conference/usenixsecurity23/presentation/f
ranken.

[Fre+22] E. Fregnan, L. Braz, M. D’Ambros, G. Çalikli, and A. Bacchelli.
“First Come First Served: The Impact of File Position on Code
Review”. In: arXiv preprint arXiv:2208.04259 (2022).

[FVJ18] G. Franken, T. Van Goethem, and W. Joosen. “Who Left Open the
Cookie Jar? A Comprehensive Evaluation of Third-Party Cookie
Policies”. In: 27th USENIX Security Symposium (USENIX Security
18). Baltimore, MD: USENIX Association, Aug. 2018, pp. 151–168.
isbn: 978-1-939133-04-5. url: https://www.usenix.org/confer
ence/usenixsecurity18/presentation/franken.

https://firefox-source-docs.mozilla.org/setup/contributing_code.html
https://firefox-source-docs.mozilla.org/setup/contributing_code.html
https://firefox-source-docs.mozilla.org/testing/mochitest-plain/index.html
https://firefox-source-docs.mozilla.org/testing/mochitest-plain/index.html
https://hg.mozilla.org/releases/mozilla-release/rev/6b181afc9fadbd4bb9d04648aa24a34bd9731e82
https://hg.mozilla.org/releases/mozilla-release/rev/6b181afc9fadbd4bb9d04648aa24a34bd9731e82
https://doi.org/10.1145/2976749.2978385
https://doi.org/10.1145/2976749.2978385
https://doi.org/10.1145/2976749.2978385
https://doi.org/10.1109/CSF.2017.20
https://www.theguardian.com/books/2014/dec/10/kobo-survey-books-readers-finish-donna-tartt
https://www.theguardian.com/books/2014/dec/10/kobo-survey-books-readers-finish-donna-tartt
https://www.theguardian.com/books/2014/dec/10/kobo-survey-books-readers-finish-donna-tartt
https://www.usenix.org/conference/usenixsecurity23/presentation/franken
https://www.usenix.org/conference/usenixsecurity23/presentation/franken
https://www.usenix.org/conference/usenixsecurity23/presentation/franken
https://www.usenix.org/conference/usenixsecurity18/presentation/franken
https://www.usenix.org/conference/usenixsecurity18/presentation/franken

BIBLIOGRAPHY 159

[FVJ19] G. Franken, T. Van Goethem, and W. Joosen. “Exposing Cookie
Policy Flaws Through an Extensive Evaluation of Browsers and
Their Extensions”. In: IEEE Security & Privacy 17.4 (2019), pp. 25–
34. doi: 10.1109/MSEC.2019.2909710.

[FVJ21] G. Franken, T. Van Goethem, and W. Joosen. “Reading Between
the Lines: An Extensive Evaluation of the Security and Privacy
Implications of EPUB Reading Systems”. In: 2021 IEEE Symposium
on Security and Privacy (SP). 2021, pp. 1730–1747. doi: 10.1109
/SP40001.2021.00015.

[GC19] M. Garrish and D. Cramer. EPUB 3.2. Standard. W3C, May 2019.
url: https://www.w3.org/publishing/epub32/epub-spec.htm
l.

[GCH23] M. Garrish, D. Cramer, and I. Herman. EPUB 3.3. W3C
Recommendation. W3C, May 2023. url: https://www.w3.or
g/TR/2023/REC-epub-33-20230525/.

[GH15] N. Gelernter and A. Herzberg. “Cross-Site Search Attacks”. In:
Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security. CCS ’15. Denver, Colorado, USA:
ACM, 2015, pp. 1394–1405. isbn: 978-1-4503-3832-5. doi: 10.1145
/2810103.2813688. url: http://doi.acm.org/10.1145/281010
3.2813688.

[Git] GitHub. PDF.js. url: https://mozilla.github.io/pdf.js/.
[Git22] GitHub. electron 19.1.9. Nov. 2022. url: https://github.com/e

lectron/electron/releases/tag/v19.1.9.
[GKK21] D. Geradin, D. Katsifis, and T. Karanikioti. “Google as a de

facto privacy regulator: analysing the privacy sandbox from an
antitrust perspective”. In: European Competition Journal 17.3
(2021), pp. 617–681.

[Gooa] Google. Chrome Vulnerability Reward Program Rules. url: https:
//bughunters.google.com/about/rules/5745167867576320/c
hrome-vulnerability-reward-program-rules.

[Goob] Google. Web Tests (formerly known as "Layout Tests" or "Lay-
outTests"). url: https://chromium.googlesource.com/chromiu
m/src/+/refs/heads/main/docs/testing/web_tests.md%5C#b
isecting-regressions.

[Gooc] Google Source. PDFium. url: https://pdfium.googlesource.c
om/pdfium/.

[Goo22] Google Cloud. DevOps tech: Trunk-based development. 2022. url:
https://cloud.google.com/architecture/devops/devops-te
ch-trunk-based-development.

https://doi.org/10.1109/MSEC.2019.2909710
https://doi.org/10.1109/SP40001.2021.00015
https://doi.org/10.1109/SP40001.2021.00015
https://www.w3.org/publishing/epub32/epub-spec.html
https://www.w3.org/publishing/epub32/epub-spec.html
https://www.w3.org/TR/2023/REC-epub-33-20230525/
https://www.w3.org/TR/2023/REC-epub-33-20230525/
https://doi.org/10.1145/2810103.2813688
https://doi.org/10.1145/2810103.2813688
http://doi.acm.org/10.1145/2810103.2813688
http://doi.acm.org/10.1145/2810103.2813688
https://mozilla.github.io/pdf.js/
https://github.com/electron/electron/releases/tag/v19.1.9
https://github.com/electron/electron/releases/tag/v19.1.9
https://bughunters.google.com/about/rules/5745167867576320/chrome-vulnerability-reward-program-rules
https://bughunters.google.com/about/rules/5745167867576320/chrome-vulnerability-reward-program-rules
https://bughunters.google.com/about/rules/5745167867576320/chrome-vulnerability-reward-program-rules
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/testing/web_tests.md%5C#bisecting-regressions
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/testing/web_tests.md%5C#bisecting-regressions
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/testing/web_tests.md%5C#bisecting-regressions
https://pdfium.googlesource.com/pdfium/
https://pdfium.googlesource.com/pdfium/
https://cloud.google.com/architecture/devops/devops-tech-trunk-based-development
https://cloud.google.com/architecture/devops/devops-tech-trunk-based-development

160 BIBLIOGRAPHY

[Gro+07] J. Grossman, R. Hansen, P. D. Petkov, A. Rager, and S. Fogie.
XSS Attacks: Cross Site Scripting Exploits and Defense. Syngress
Publishing, 2007. isbn: 9780080553405.

[Gro06] J. Grossman. “CSRF, the sleeping giant”. In: (Sept. 2006). url:
https://blog.jeremiahgrossman.com/2006/09/csrf-sleepin
g-giant.html.

[GS02] S. Garfinkel and G. Spafford. Web security, privacy & commerce.
O’Reilly Media, Inc., 2002.

[GW17] I. Grigorik and M. West. Reporting API. Tech. rep. Nov. 2017. url:
https://wicg.github.io/reporting/.

[GW96] I. Goldberg and D. Wagner. “Randomness and the Netscape
Browser”. In: Dr. Dobb’s Journal. Jan. 1996. url: https://p
eople.eecs.berkeley.edu/~daw/papers/ddj-netscape.html.

[Hei+12] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk.
“Scriptless Attacks: Stealing the Pie without Touching the Sill”.
In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. CCS ’12. Raleigh, North Carolina, USA:
Association for Computing Machinery, 2012, pp. 760–771. isbn:
9781450316514. doi: 10.1145/2382196.2382276. url: https://d
oi.org/10.1145/2382196.2382276.

[Hic16] I. Hickson. Web Storage (Second Edition). W3C Recommendation.
http://www.w3.org/TR/2016/REC-webstorage-20160419/. W3C,
Apr. 2016.

[HL] I. Herman and D. Lazin. EPUB 3.3 Test Results. url: https://w
3c.github.io/epub-tests/results.

[HMN15] C. Hothersall-Thomas, S. Maffeis, and C. Novakovic. “BrowserAudit:
Automated Testing of Browser Security Features”. In: Proceedings of
the 2015 International Symposium on Software Testing and Analysis.
ISSTA 2015. Baltimore, MD, USA: Association for Computing
Machinery, 2015, pp. 37–47. isbn: 9781450336208. doi: 10.1145/2
771783.2771789. url: https://doi.org/10.1145/2771783.277
1789.

[How21] E. Howcroft. “World Wide Web source code NFT sells for 5.4
million at Sotheby’s”. In: (July 2021). url: https://www.reuter
s.com/technology/world-wide-web-source-code-nft-sells-
54-million-sothebys-2021-06-30/.

[IAN] Internet Assigned Numbers Authority. Uniform Resource Identifier
(URI) Schemes. url: https://www.iana.org/assignments/uri-
schemes/uri-schemes.xhtml.

https://blog.jeremiahgrossman.com/2006/09/csrf-sleeping-giant.html
https://blog.jeremiahgrossman.com/2006/09/csrf-sleeping-giant.html
https://wicg.github.io/reporting/
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
https://people.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
https://doi.org/10.1145/2382196.2382276
https://doi.org/10.1145/2382196.2382276
https://doi.org/10.1145/2382196.2382276
https://w3c.github.io/epub-tests/results
https://w3c.github.io/epub-tests/results
https://doi.org/10.1145/2771783.2771789
https://doi.org/10.1145/2771783.2771789
https://doi.org/10.1145/2771783.2771789
https://doi.org/10.1145/2771783.2771789
https://www.reuters.com/technology/world-wide-web-source-code-nft-sells-54-million-sothebys-2021-06-30/
https://www.reuters.com/technology/world-wide-web-source-code-nft-sells-54-million-sothebys-2021-06-30/
https://www.reuters.com/technology/world-wide-web-source-code-nft-sells-54-million-sothebys-2021-06-30/
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

BIBLIOGRAPHY 161

[Ian+23] E. Iannone, R. Guadagni, F. Ferrucci, A. De Lucia, and F. Palomba.
“The Secret Life of Software Vulnerabilities: A Large-Scale Empirical
Study”. In: IEEE Transactions on Software Engineering 49.1 (2023),
pp. 44–63. doi: 10.1109/TSE.2022.3140868.

[IAN14] Internet Assigned Numbers Authority. Media type assignment:
epub+zip. Nov. 2014. url: https://www.iana.org/assignments
/media-types/application/epub+zip.

[Int17] Intellectual Property Office. Online Copyright Infringement Tracker:
Latest wave of research. 2017. url: https://assets.publishing
.service.gov.uk/government/uploads/system/uploads/atta
chment_data/file/628704/OCI_-tracker-7th-wave.pdf.

[ISQ17] U. Iqbal, Z. Shafiq, and Z. Qian. “The Ad Wars: Retrospective
Measurement and Analysis of Anti-Adblock Filter Lists”. In: Nov.
2017, pp. 171–183.

[IV10] H. J. d. V. Ilan Oshri and H. de Vries. “The rise of Firefox in the
web browser industry: The role of open source in setting standards”.
In: Business History 52.5 (2010), pp. 834–856. doi: 10.1080/0007
6791.2010.499431. eprint: https://doi.org/10.1080/0007679
1.2010.499431. url: https://doi.org/10.1080/00076791.201
0.499431.

[Jac96] T. Jackson. “This bug in your PC is a smart cookie”. In: Financial
Times (Feb. 1996).

[JB08] C. Jackson and A. Barth. “Beware of finer-grained origins”. In:
Web. 2008. url: https://seclab.stanford.edu/websec/origi
ns/fgo.pdf.

[JLS13] M. Johns, S. Lekies, and B. Stock. “Eradicating DNS Rebinding
with the Extended Same-origin Policy”. In: 22nd USENIX Security
Symposium (USENIX Security 13). Washington, D.C.: USENIX
Association, Aug. 2013, pp. 621–636. isbn: 978-1-931971-03-4. url:
https://www.usenix.org/conference/usenixsecurity13/tec
hnical-sessions/presentation/johns.

[JTL12] D. Jang, Z. Tatlock, and S. Lerner. “Establishing Browser Security
Guarantees through Formal Shim Verification”. In: 21st USENIX
Security Symposium (USENIX Security 12). Bellevue, WA: USENIX
Association, Aug. 2012, pp. 113–128. isbn: 978-931971-95-9. url:
https://www.usenix.org/conference/usenixsecurity12/tec
hnical-sessions/presentation/jang.

[Jun17] Jun Kokatsu. Is your ePub reader secure enough? May 2017. url:
https://shhnjk.blogspot.com/2017/05/is-your-epub-reade
r-secure-enough.html.

https://doi.org/10.1109/TSE.2022.3140868
https://www.iana.org/assignments/media-types/application/epub+zip
https://www.iana.org/assignments/media-types/application/epub+zip
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/628704/OCI_-tracker-7th-wave.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/628704/OCI_-tracker-7th-wave.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/628704/OCI_-tracker-7th-wave.pdf
https://doi.org/10.1080/00076791.2010.499431
https://doi.org/10.1080/00076791.2010.499431
https://doi.org/10.1080/00076791.2010.499431
https://doi.org/10.1080/00076791.2010.499431
https://doi.org/10.1080/00076791.2010.499431
https://doi.org/10.1080/00076791.2010.499431
https://seclab.stanford.edu/websec/origins/fgo.pdf
https://seclab.stanford.edu/websec/origins/fgo.pdf
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/johns
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/johns
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/jang
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/jang
https://shhnjk.blogspot.com/2017/05/is-your-epub-reader-secure-enough.html
https://shhnjk.blogspot.com/2017/05/is-your-epub-reader-secure-enough.html

162 BIBLIOGRAPHY

[Kaf25] F. Kafka. The Trial. Verlag Die Schmiede, Apr. 1925.
[Kas10] M. Kaste. Is Your E-Book Reading Up On You? Dec. 14, 2010.

url: https://www.npr.org/2010/12/15/132058735/is-your-e
-book-reading-up-on-you (visited on 11/06/2019).

[KC15] G. Kontaxis and M. Chew. “Tracking Protection in Firefox For
Privacy and Performance”. In: In IEEE Web 2.0 Security & Privacy
(2015). url: https://arxiv.org/abs/1506.04104.

[Kei17] G. Keizer. Mozilla’s record 2016 revenue funded its Firefox Quantum
browser. Dec. 2017. url: https://www.computerworld.com/arti
cle/3240008/mozillas-record-2016-revenue-funded-its-fi
refox-quantum-browser.html.

[Kes22] A. van Kesteren. The Topics API. Dec. 2022. url: https://gith
ub.com/WebKit/standards-positions/issues/111.

[Kle10] L. Kleinrock. “An early history of the internet”. In: IEEE
Communications Magazine 48.8 (Aug. 2010), pp. 26–36.

[KM97] D. Kristol and L. Montulli. HTTP State Management Mechanism.
RFC 2109. RFC Editor, Feb. 1997, pp. 1–21. url: https://tools
.ietf.org/html/rfc2109.

[KMG18] C. Kerschbaumer, F. Marier, and M. Goodwin. Supporting Same-
Site Cookies in Firefox 60. Apr. 2018. url: https://blog.mozill
a.org/security/2018/04/24/same-site-cookies-in-firefox
-60/.

[Kni+21] L. Knittel, C. Mainka, M. Niemietz, D. T. Noß, and J. Schwenk.
“XSinator.Com: From a Formal Model to the Automatic Evaluation
of Cross-Site Leaks in Web Browsers”. In: Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications
Security. CCS ’21. Virtual Event, Republic of Korea: Association for
Computing Machinery, 2021, pp. 1771–1788. isbn: 9781450384544.
doi: 10.1145/3460120.3484739. url: https://doi.org/10.114
5/3460120.3484739.

[Kob] Kobo Labs. Kobo EPUB Guidelines. url: https://github.com/k
obolabs/epub-spec/blob/master/README.md.

[KPW06] S. Kim, K. Pan, and E. E. J. Whitehead. “Memories of Bug
Fixes”. In: Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. SIGSOFT
’06/FSE-14. Portland, Oregon, USA: Association for Computing
Machinery, 2006, pp. 35–45. isbn: 1595934685. doi: 10.1145/11817
75.1181781. url: https://doi.org/10.1145/1181775.1181781.

https://www.npr.org/2010/12/15/132058735/is-your-e-book-reading-up-on-you
https://www.npr.org/2010/12/15/132058735/is-your-e-book-reading-up-on-you
https://arxiv.org/abs/1506.04104
https://www.computerworld.com/article/3240008/mozillas-record-2016-revenue-funded-its-firefox-quantum-browser.html
https://www.computerworld.com/article/3240008/mozillas-record-2016-revenue-funded-its-firefox-quantum-browser.html
https://www.computerworld.com/article/3240008/mozillas-record-2016-revenue-funded-its-firefox-quantum-browser.html
https://github.com/WebKit/standards-positions/issues/111
https://github.com/WebKit/standards-positions/issues/111
https://tools.ietf.org/html/rfc2109
https://tools.ietf.org/html/rfc2109
https://blog.mozilla.org/security/2018/04/24/same-site-cookies-in-firefox-60/
https://blog.mozilla.org/security/2018/04/24/same-site-cookies-in-firefox-60/
https://blog.mozilla.org/security/2018/04/24/same-site-cookies-in-firefox-60/
https://doi.org/10.1145/3460120.3484739
https://doi.org/10.1145/3460120.3484739
https://doi.org/10.1145/3460120.3484739
https://github.com/kobolabs/epub-spec/blob/master/README.md
https://github.com/kobolabs/epub-spec/blob/master/README.md
https://doi.org/10.1145/1181775.1181781
https://doi.org/10.1145/1181775.1181781
https://doi.org/10.1145/1181775.1181781

BIBLIOGRAPHY 163

[Kri01] D. M. Kristol. “HTTP Cookies: Standards, Privacy, and Politics”.
In: ACM Trans. Internet Technol. 1.2 (Nov. 2001), pp. 151–198.
issn: 1533-5399. doi: 10.1145/502152.502153. url: https://do
i.org/10.1145/502152.502153.

[Lap+20] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine. “Browser
Fingerprinting: A Survey”. In: ACM Trans. Web 14.2 (Apr. 2020).
issn: 1559-1131. doi: 10.1145/3386040. url: https://doi.org
/10.1145/3386040.

[Lee17] J. H. Lee. Issue 1134: WebKit: UXSS via ContainerNode ::
parserRemoveChild (2). 2017. url: https://bugs.chromium.org
/p/project-zero/issues/detail?id=1134.

[Lei+97] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock,
D. C. Lynch, J. Postel, L. G. Roberts, and S. S. Wolff. “The Past
and Future History of the Internet”. In: Commun. ACM 40.2 (Feb.
1997), pp. 102–108. issn: 0001-0782. doi: 10.1145/253671.253741.
url: https://doi.org/10.1145/253671.253741.

[Lek+15] S. Lekies, B. Stock, M. Wentzel, and M. Johns. “The Unexpected
Dangers of Dynamic JavaScript”. In: 24th USENIX Security
Symposium (USENIX Security 15). Washington, D.C.: USENIX
Association, 2015, pp. 723–735. isbn: 978-1-931971-232. url: http
s://www.usenix.org/conference/usenixsecurity15/technic
al-sessions/presentation/lekies.

[Ler+13] B. S. Lerner, L. Elberty, N. Poole, and S. Krishnamurthi. “Verifying
web browser extensions’ compliance with private-browsing mode”.
In: European Symposium on Research in Computer Security.
Springer. 2013, pp. 57–74.

[leva] levels.fyi. Google L5 Software Engineer Salary. url: https://www
.levels.fyi/companies/google/salaries/software-enginee
r/levels/l5.

[levb] levels.fyi. Mozilla P5 - Senior Staff Sofware Engineer Salary. url:
https://www.levels.fyi/companies/mozilla/salaries/soft
ware-engineer/levels/p5.

[Lin+09] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog. “Threat Modeling
for CSRF Attacks”. In: 2009 International Conference on Compu-
tational Science and Engineering. Vol. 3. 2009, pp. 486–491. doi:
10.1109/CSE.2009.372.

[Liu+19] M. Liu, B. Zhang, W. Chen, and X. Zhang. “A Survey of
Exploitation and Detection Methods of XSS Vulnerabilities”. In:
IEEE Access 7 (2019), pp. 182004–182016. doi: 10.1109/ACCESS.2
019.2960449.

https://doi.org/10.1145/502152.502153
https://doi.org/10.1145/502152.502153
https://doi.org/10.1145/502152.502153
https://doi.org/10.1145/3386040
https://doi.org/10.1145/3386040
https://doi.org/10.1145/3386040
https://bugs.chromium.org/p/project-zero/issues/detail?id=1134
https://bugs.chromium.org/p/project-zero/issues/detail?id=1134
https://doi.org/10.1145/253671.253741
https://doi.org/10.1145/253671.253741
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.levels.fyi/companies/google/salaries/software-engineer/levels/l5
https://www.levels.fyi/companies/google/salaries/software-engineer/levels/l5
https://www.levels.fyi/companies/google/salaries/software-engineer/levels/l5
https://www.levels.fyi/companies/mozilla/salaries/software-engineer/levels/p5
https://www.levels.fyi/companies/mozilla/salaries/software-engineer/levels/p5
https://doi.org/10.1109/CSE.2009.372
https://doi.org/10.1109/ACCESS.2019.2960449
https://doi.org/10.1109/ACCESS.2019.2960449

164 BIBLIOGRAPHY

[LRB16] P. Laperdrix, W. Rudametkin, and B. Baudry. “Beauty and the
Beast: Diverting Modern Web Browsers to Build Unique Browser
Fingerprints”. In: 2016 IEEE Symposium on Security and Privacy
(SP). 2016, pp. 878–894. doi: 10.1109/SP.2016.57.

[Luo+17] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis. “Hindsight:
Understanding the Evolution of UI Vulnerabilities in Mobile
Browsers”. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’17. Dallas, Texas,
USA: Association for Computing Machinery, 2017, pp. 149–162.
isbn: 9781450349468. doi: 10.1145/3133956.3133987. url: http
s://doi.org/10.1145/3133956.3133987.

[Luo+19] M. Luo, P. Laperdrix, N. Honarmand, and N. Nikiforakis. “Time
does not heal all wounds: A longitudinal analysis of security-
mechanism support in mobile browsers”. In: Proceedings of the
26th Network and Distributed System Security Symposium (NDSS).
2019. url: https://www.ndss-symposium.org/wp-content/upl
oads/2019/02/ndss2019_01A-4_Luo_paper.pdf.

[MCG13] D. Maiorca, I. Corona, and G. Giacinto. “Looking at the Bag
is Not Enough to Find the Bomb: An Evasion of Structural
Methods for Malicious PDF Files Detection”. In: Proceedings of
the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security. ASIA CCS ’13. Hangzhou, China: ACM,
2013, pp. 119–130. isbn: 978-1-4503-1767-2. doi: 10.1145/248431
3.2484327. url: http://doi.acm.org/10.1145/2484313.24843
27.

[Mer23] R. Merewood. Preparing for the end of third-party cookies. Oct.
2023. url: https://developer.chrome.com/blog/cookie-coun
tdown-2023oct/.

[Mic] Microsoft. Version update history for the new and classic Microsoft
Teams app. url: https://learn.microsoft.com/en-us/office
updates/teams-app-versioning.

[Mic09] Microsoft. Happy 10th birthday Cross-Site Scripting! Dec. 2009.
url: https://learn.microsoft.com/en-ca/archive/blogs/dr
oss/happy-10th-birthday-cross-site-scripting.

[Mic18] Microsoft. Platform status. 2018. url: https://developer.micro
soft.com/en-us/microsoft-edge/platform/status/samesite
cookies/.

[Miy01] H. Miyazaki (Writer and Director). Spirited Away. Studio Ghibli,
July 2001.

https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1145/3133956.3133987
https://doi.org/10.1145/3133956.3133987
https://doi.org/10.1145/3133956.3133987
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01A-4_Luo_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01A-4_Luo_paper.pdf
https://doi.org/10.1145/2484313.2484327
https://doi.org/10.1145/2484313.2484327
http://doi.acm.org/10.1145/2484313.2484327
http://doi.acm.org/10.1145/2484313.2484327
https://developer.chrome.com/blog/cookie-countdown-2023oct/
https://developer.chrome.com/blog/cookie-countdown-2023oct/
https://learn.microsoft.com/en-us/officeupdates/teams-app-versioning
https://learn.microsoft.com/en-us/officeupdates/teams-app-versioning
https://learn.microsoft.com/en-ca/archive/blogs/dross/happy-10th-birthday-cross-site-scripting
https://learn.microsoft.com/en-ca/archive/blogs/dross/happy-10th-birthday-cross-site-scripting
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/samesitecookies/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/samesitecookies/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/samesitecookies/

BIBLIOGRAPHY 165

[Mla+18] V. Mladenov, C. Mainka, K. M. zu Selhausen, M. Grothe, and
J. Schwenk. “Vulnerability Report: Attacks bypassing the signature
validation in PDF”. In: (Nov. 2018). https://www.nds.ruhr-uni-
bochum.de/media/ei/veroeffentlichungen/2019/02/12/report.pdf.

[MM12] J. R. Mayer and J. C. Mitchell. “Third-Party Web Tracking: Policy
and Technology”. In: 2012 IEEE Symposium on Security and
Privacy. May 2012, pp. 413–427. doi: 10.1109/SP.2012.47.

[Moza] Mozilla. Handling Mozilla Security Bugs. url: https://www.mozi
lla.org/en-US/about/governance/policies/security-group
/bugs/.

[Mozb] Mozilla. Patch uplifting rules. url: https://wiki.mozilla.org
/Release_Management/Uplift_rules.

[Mozc] Mozilla. Release Management/Feature Uplift. url: https://wiki
.mozilla.org/Release_Management/Feature_Uplift.

[Mozd] Mozilla. Understanding Web Security Checks in Firefox (Part 1).
url: https://blog.mozilla.org/attack-and-defense/2020/0
6/10/understanding-web-security-checks-in-firefox-part
-1/.

[Moze] Mozilla Developer Network. Content Security Policy. url: https:
//developer.mozilla.org/en-US/docs/Mozilla/Add-ons/Web
Extensions/Content_Security_Policy.

[Mozf] Mozilla Developer Network. Content Security Policy (CSP). url:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP.

[Mozg] Mozilla Developer Network. IndexedDB API. url: https://devel
oper.mozilla.org/en-US/docs/Web/API/IndexedDB_API.

[Mozh] Mozilla Developer Network. LocalStorage. url: https://develop
er.mozilla.org/en-US/docs/Web/API/Storage/LocalStorage.

[Mozi] Mozilla Developer Network. mdn-browser-compat-data. url: https
://github.com/mdn/browser-compat-data.

[Mozj] Mozilla Developer Network. MediaDevices. url: https://develop
er.mozilla.org/en-US/docs/Web/API/MediaDevices.

[Mozk] Mozilla Developer Network. Same-origin policy. url: https://de
veloper.mozilla.org/en-US/docs/Web/Security/Same-origi
n_policy.

[Mozl] Mozilla Support. Firefox Focus. url: https://support.mozilla
.org/en-US/products/focus-firefox.

[Mozm] Mozilla Wiki. url: https://wiki.mozilla.org/Security/Safe
_Browsing.

https://doi.org/10.1109/SP.2012.47
https://www.mozilla.org/en-US/about/governance/policies/security-group/bugs/
https://www.mozilla.org/en-US/about/governance/policies/security-group/bugs/
https://www.mozilla.org/en-US/about/governance/policies/security-group/bugs/
https://wiki.mozilla.org/Release_Management/Uplift_rules
https://wiki.mozilla.org/Release_Management/Uplift_rules
https://wiki.mozilla.org/Release_Management/Feature_Uplift
https://wiki.mozilla.org/Release_Management/Feature_Uplift
https://blog.mozilla.org/attack-and-defense/2020/06/10/understanding-web-security-checks-in-firefox-part-1/
https://blog.mozilla.org/attack-and-defense/2020/06/10/understanding-web-security-checks-in-firefox-part-1/
https://blog.mozilla.org/attack-and-defense/2020/06/10/understanding-web-security-checks-in-firefox-part-1/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_Security_Policy
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_Security_Policy
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_Security_Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/Storage/LocalStorage
https://developer.mozilla.org/en-US/docs/Web/API/Storage/LocalStorage
https://github.com/mdn/browser-compat-data
https://github.com/mdn/browser-compat-data
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://support.mozilla.org/en-US/products/focus-firefox
https://support.mozilla.org/en-US/products/focus-firefox
https://wiki.mozilla.org/Security/Safe_Browsing
https://wiki.mozilla.org/Security/Safe_Browsing

166 BIBLIOGRAPHY

[Mozn] MozillaSecurity. autobisect. url: https://github.com/Mozilla
Security/autobisect.

[Moz15] Mozilla Blog. Firefox Now Offers a More Private Browsing
Experience. 2015. url: https://blog.mozilla.org/blog/20
15/11/03/firefox-now-offers-a-more-private-browsing-ex
perience/.

[Moz17a] Mozilla Developer Network. Beacon API. 2017. url: https://dev
eloper.mozilla.org/en-US/docs/Web/API/Beacon_API.

[Moz17b] Mozilla Developer Network. Fetch API. 2017. url: https://deve
loper.mozilla.org/en-US/docs/Web/API/Fetch_API.

[Moz17c] Mozilla Developer Network. Service Worker API. 2017. url: https
://developer.mozilla.org/en-US/docs/Web/API/Service_Wo
rker_API.

[Moz17d] Mozilla Developer Network. webRequest. 2017. url: https://dev
eloper.mozilla.org/en-US/Add-ons/WebExtensions/API/web
Request.

[Moz17e] Mozilla Developer Network. WebSocket. 2017. url: https://deve
loper.mozilla.org/en-US/docs/Web/API/WebSocket.

[Moz17f] Mozilla Developer Network. XMLHttpRequest. 2017. url: https:
//developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequ
est.

[Moz18a] Mozilla Developer Network. EventSource. 2018. url: https://dev
eloper.mozilla.org/en-US/docs/Web/API/EventSource.

[Moz18b] Mozilla Developer Network. Using the application cache. 2018. url:
https://developer.mozilla.org/en-US/docs/Web/HTML/Usin
g_the_application_cache.

[Moz23] Mozilla. Firefox rolls out Total Cookie Protection by default to more
users worldwide. Apr. 2023. url: https://blog.mozilla.org/en
/mozilla/firefox-rolls-out-total-cookie-protection-by-
default-to-all-users-worldwide/.

[Mun+17] N. Munaiah, F. Camilo, W. Wigham, A. Meneely, and M. Nagappan.
“Do Bugs Foreshadow Vulnerabilities? An in-Depth Study of the
Chromium Project”. In: Empirical Softw. Engg. 22.3 (June 2017),
pp. 1305–1347. issn: 1382-3256. doi: 10.1007/s10664-016-9447-
3. url: https://doi.org/10.1007/s10664-016-9447-3.

https://github.com/MozillaSecurity/autobisect
https://github.com/MozillaSecurity/autobisect
https://blog.mozilla.org/blog/2015/11/03/firefox-now-offers-a-more-private-browsing-experience/
https://blog.mozilla.org/blog/2015/11/03/firefox-now-offers-a-more-private-browsing-experience/
https://blog.mozilla.org/blog/2015/11/03/firefox-now-offers-a-more-private-browsing-experience/
https://developer.mozilla.org/en-US/docs/Web/API/Beacon_API
https://developer.mozilla.org/en-US/docs/Web/API/Beacon_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/webRequest
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/webRequest
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/webRequest
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://developer.mozilla.org/en-US/docs/Web/HTML/Using_the_application_cache
https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/
https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/
https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-protection-by-default-to-all-users-worldwide/
https://doi.org/10.1007/s10664-016-9447-3
https://doi.org/10.1007/s10664-016-9447-3
https://doi.org/10.1007/s10664-016-9447-3

BIBLIOGRAPHY 167

[Nat13] Nate Hoffelder. “An Epub3 eBook Could be Used to Hack Your
Tablet, Steal Your Identity, and Cause the Downfall of Western
Civilization”. In: (2013). https://the-digital-reader.com/201
3/06/09/eric-hellmans-publishing-hackathon-entry-could
-be-used-to-hack-your-tablet-steal-your-identity-and-c
ause-the-downfall-of-western-civilization/.

[Nis+15] N. Nissim, A. Cohen, C. Glezer, and Y. Elovici. “Detection of
malicious PDF files and directions for enhancements: A state-of-the
art survey”. In: Computers & Security 48 (2015), pp. 246–266. issn:
0167-4048. doi: https://doi.org/10.1016/j.cose.2014.10.01
4. url: http://www.sciencedirect.com/science/article/pii
/S0167404814001606.

[Not10] M. Nottingham. Web Linking. RFC 5988. RFC Editor, Oct. 2010,
pp. 1–23. url: https://tools.ietf.org/html/rfc5988.

[nrc19] nrclark. Pyfuse: A tool for simple FUSE Filesystems. GitHub, 2019.
url: https://github.com/nrclark/pyfuse.

[Och11] J. G. Ochin. “Cross Browser Incompatibility: Reasons and
Solutions”. In: International Journal of Software Engineering &
Applications (IJSEA) 2.3 (2011), pp. 66–77.

[OS06] A. Ozment and S. E. Schechter. “Milk or Wine: Does Software
Security Improve with Age?” In: 15th USENIX Security Sympo-
sium (USENIX Security 06). Vancouver, B.C. Canada: USENIX
Association, July 2006. url: https://www.usenix.org/conferen
ce/15th-usenix-security-symposium/milk-or-wine-does-so
ftware-security-improve-age.

[OWA] OWASP. Top Ten Project. url: https://owasp.org/www-projec
t-top-ten/.

[Par+20] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim. “Fuzzing JavaScript
Engines with Aspect-preserving Mutation”. In: 2020 IEEE Sym-
posium on Security and Privacy (SP). 2020, pp. 1629–1642. doi:
10.1109/SP40000.2020.00067.

[Phi98] B. Phillips. “Designers: the browser war casualties”. In: Computer
31.10 (1998), pp. 14–16. doi: 10.1109/2.722269.

[Pie17] M. Pietraszak. Browser Extensions. Draft Community Group
Report. https://browserext.github.io/browserext/. W3C, July 2017.
url: Draft%20Community%20Group%20Report.

[Pop16] A. Popescu. Geolocation API Specification 2nd Edition. W3C Rec-
ommendation. https://www.w3.org/TR/2016/REC-geolocation-
API-20161108/. W3C, Nov. 2016.

https://the-digital-reader.com/2013/06/09/eric-hellmans-publishing-hackathon-entry-could-be-used-to-hack-your-tablet-steal-your-identity-and-cause-the-downfall-of-western-civilization/
https://the-digital-reader.com/2013/06/09/eric-hellmans-publishing-hackathon-entry-could-be-used-to-hack-your-tablet-steal-your-identity-and-cause-the-downfall-of-western-civilization/
https://the-digital-reader.com/2013/06/09/eric-hellmans-publishing-hackathon-entry-could-be-used-to-hack-your-tablet-steal-your-identity-and-cause-the-downfall-of-western-civilization/
https://the-digital-reader.com/2013/06/09/eric-hellmans-publishing-hackathon-entry-could-be-used-to-hack-your-tablet-steal-your-identity-and-cause-the-downfall-of-western-civilization/
https://doi.org/https://doi.org/10.1016/j.cose.2014.10.014
https://doi.org/https://doi.org/10.1016/j.cose.2014.10.014
http://www.sciencedirect.com/science/article/pii/S0167404814001606
http://www.sciencedirect.com/science/article/pii/S0167404814001606
https://tools.ietf.org/html/rfc5988
https://github.com/nrclark/pyfuse
https://www.usenix.org/conference/15th-usenix-security-symposium/milk-or-wine-does-software-security-improve-age
https://www.usenix.org/conference/15th-usenix-security-symposium/milk-or-wine-does-software-security-improve-age
https://www.usenix.org/conference/15th-usenix-security-symposium/milk-or-wine-does-software-security-improve-age
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1109/2.722269
Draft%20Community%20Group%20Report

168 BIBLIOGRAPHY

[pri] privacytests.org. PrivacyTests.org: Open-source tests of web browser
privacy. url: https://privacytests.org/.

[Pro] Project Gutenberg. Project Gutenberg Submission Guidelines. url:
https://web.archive.org/web/20181108181052/https://upl
oad.pglaf.org/.

[PwC10] PricewaterhouseCoopers. “Turning the Page: The Future of eBooks”.
In: (2010). https://www.pwc.co.uk/assets/pdf/ebooks-trends-and-
developments.pdf. (Visited on 11/10/2019).

[PXH22] V. Prakash, S. Xie, and D. Y. Huang. “Inferring Software
Update Practices on Smart Home IoT Devices Through User
Agent Analysis”. In: Proceedings of the 2022 ACM Workshop on
Software Supply Chain Offensive Research and Ecosystem Defenses.
SCORED’22. Los Angeles, CA, USA: Association for Computing
Machinery, 2022, pp. 93–103. isbn: 9781450398855. doi: 10.1145
/3560835.3564551. url: https://doi.org/10.1145/3560835.3
564551.

[Res05] E. Rescorla. “Is Finding Security Holes a Good Idea?” In: IEEE
Security and Privacy 3.1 (Jan. 2005), pp. 14–19. issn: 1540-7993.
doi: 10.1109/MSP.2005.17. url: https://doi.org/10.1109
/MSP.2005.17.

[Res21] E. Rescorla. Privacy analysis of FLoC. June 2021. url: Privacy
%20analysis%20of%20FLoC.

[RKW12] F. Roesner, T. Kohno, and D. Wetherall. “Detecting and Defending
Against Third-party Tracking on the Web”. In: Proceedings of
the 9th USENIX Conference on Networked Systems Design and
Implementation. NSDI’12. San Jose, CA: USENIX Association,
2012, pp. 12–12. url: http://dl.acm.org/citation.cfm?id=22
28298.2228315.

[RMJ15] K. Russell, Z. Mo, and B. Jones. “Continuous Testing of Chrome’s
WebGL Implementation”. In: WebGL Insights. Ed. by P. Cozzi.
http://www.webglinsights.com/. CRC Press, July 2015, pp. 31–46.
isbn: 978-1498716079.

[Rot+] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock.
“Complex Security Policy? A Longitudinal Analysis of Deployed
Content Security Policies”. In: Proceedings of the 27th Network and
Distributed System Security Symposium (NDSS) (). doi: 10.14722
/ndss.2020.23046. url: https://par.nsf.gov/biblio/101734
79.

https://privacytests.org/
https://web.archive.org/web/20181108181052/https://upload.pglaf.org/
https://web.archive.org/web/20181108181052/https://upload.pglaf.org/
https://doi.org/10.1145/3560835.3564551
https://doi.org/10.1145/3560835.3564551
https://doi.org/10.1145/3560835.3564551
https://doi.org/10.1145/3560835.3564551
https://doi.org/10.1109/MSP.2005.17
https://doi.org/10.1109/MSP.2005.17
https://doi.org/10.1109/MSP.2005.17
Privacy%20analysis%20of%20FLoC
Privacy%20analysis%20of%20FLoC
http://dl.acm.org/citation.cfm?id=2228298.2228315
http://dl.acm.org/citation.cfm?id=2228298.2228315
https://doi.org/10.14722/ndss.2020.23046
https://doi.org/10.14722/ndss.2020.23046
https://par.nsf.gov/biblio/10173479
https://par.nsf.gov/biblio/10173479

BIBLIOGRAPHY 169

[RPS23] J. Rautenstrauch, G. Pellegrino, and B. Stock. “The Leaky Web:
Automated Discovery of Cross-Site Information Leaks in Browsers
and the Web”. In: 44th IEEE Symposium on Security and Privacy.
May 2023. url: https://publications.cispa.saarland/3892/.

[RSP17] S. Rathore, P. K. Sharma, and J. H. Park. “XSSClassifier: An
Efficient XSS Attack Detection Approach Based on Machine
Learning Classifier on SNSs.” In: Journal of Information Processing
Systems 13.4 (2017).

[Rya10] J. Ryan. A History of the Internet and the Digital Future. Reaktion
Books, 2010.

[SB11] H. Saiedian and D. Broyle. “Security Vulnerabilities in the Same-
Origin Policy: Implications and Alternatives”. In: Computer 44.9
(2011), pp. 29–36. doi: 10.1109/MC.2011.226.

[SB12] B. Sterne and A. Barth. Content Security Policy 1.0. W3C
Candidate Recommendation. https://www.w3.org/TR/2012/CR-
CSP-20121115/. W3C, Nov. 2012.

[SBM95] D. Simon (Writer), E. Burns (Writer), and P. Medak (Director). The
Wire. Season 1, Episode 3: The Buys. Blown Deadline Productions
and HBO Entertainment, Apr. 1995.

[SBR17] D. F. Somè, N. Bielova, and T. Rezk. “On the Content Security
Policy Violations Due to the Same-Origin Policy”. In: Proceedings
of the 26th International Conference on World Wide Web. WWW
’17. Perth, Australia: International World Wide Web Conferences
Steering Committee, 2017, pp. 877–886. isbn: 9781450349130. doi:
10.1145/3038912.3052634. url: https://doi.org/10.1145/30
38912.3052634.

[Sha17] R. Sharma. Preventing cross-site attacks using same-site cookies.
2017. url: https://blogs.dropbox.com/tech/2017/03/preven
ting-cross-site-attacks-using-same-site-cookies/.

[Shi+23] Y. Shi, Y. Zhang, T. Luo, X. Mao, and M. Yang. “Precise
(Un)Affected Version Analysis for Web Vulnerabilities”. In: ASE
’22. Rochester, MI, USA: Association for Computing Machinery,
2023. isbn: 9781450394758. doi: 10.1145/3551349.3556933. url:
https://doi.org/10.1145/3551349.3556933.

[Sie+22] H. Siewert, M. Kretschmer, M. Niemietz, and J. Somorovsky. “On
the Security of Parsing Security-Relevant HTTP Headers in Modern
Browsers”. In: 2022 IEEE Security and Privacy Workshops (SPW).
2022, pp. 342–352. doi: 10.1109/SPW54247.2022.9833880.

https://publications.cispa.saarland/3892/
https://doi.org/10.1109/MC.2011.226
https://doi.org/10.1145/3038912.3052634
https://doi.org/10.1145/3038912.3052634
https://doi.org/10.1145/3038912.3052634
https://blogs.dropbox.com/tech/2017/03/preventing-cross-site-attacks-using-same-site-cookies/
https://blogs.dropbox.com/tech/2017/03/preventing-cross-site-attacks-using-same-site-cookies/
https://doi.org/10.1145/3551349.3556933
https://doi.org/10.1145/3551349.3556933
https://doi.org/10.1109/SPW54247.2022.9833880

170 BIBLIOGRAPHY

[Sin+10] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. “On the
Incoherencies in Web Browser Access Control Policies”. In:
Proceedings of the 2010 IEEE Symposium on Security and Privacy.
SP ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 463–478. isbn: 978-0-7695-4035-1. doi: 10.1109/SP.2010.35.
url: http://dx.doi.org/10.1109/SP.2010.35.

[SL13] N. Srndic and P. Laskov. “Detection of Malicious PDF Files Based
on Hierarchical Document Structure”. In: NDSS. 2013.

[Sma19] SmashWords. Smashwords Distribution Network. 2019. url: https
://www.smashwords.com/distribution.

[SNM17] J. Schwenk, M. Niemietz, and C. Mainka. “Same-Origin Policy:
Evaluation in Modern Browsers”. In: 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, Aug. 2017, pp. 713–727. isbn: 978-1-931971-40-9. url:
https://www.usenix.org/conference/usenixsecurity17/tec
hnical-sessions/presentation/schwenk.

[Sny] Snyk. Snyk Vulnerability DB: electron. url: https://security.s
nyk.io/package/npm/electron.

[Sol+09] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle.
“Flash Cookies and Privacy”. In: vol. 2010. Aug. 2009, pp. 158–163.
doi: 10.2139/ssrn.1446862.

[SRS22] P. Stolz, S. Roth, and B. Stock. “To hash or not to hash: A security
assessment of CSP’s unsafe-hashes expression”. In: 2022 IEEE
Security and Privacy Workshops (SPW). 2022, pp. 1–12. doi: 10.1
109/SPW54247.2022.9833888.

[SS12] C. Smutz and A. Stavrou. “Malicious PDF Detection Using
Metadata and Structural Features”. In: Proceedings of the 28th
Annual Computer Security Applications Conference. ACSAC ’12.
Orlando, Florida, USA: ACM, 2012, pp. 239–248. isbn: 978-1-4503-
1312-4. doi: 10.1145/2420950.2420987. url: http://doi.acm.o
rg/10.1145/2420950.2420987.

[SSM10] S. Stamm, B. Sterne, and G. Markham. “Reining in the Web with
Content Security Policy”. In: Proceedings of the 19th International
Conference on World Wide Web. WWW ’10. Raleigh, North
Carolina, USA: Association for Computing Machinery, 2010,
pp. 921–930. isbn: 9781605587998. doi: 10.1145/1772690.17
72784. url: https://doi.org/10.1145/1772690.1772784.

[Sta17] C. P. Status. ’SameSite’ cookie attribute. 2017. url: https://www
.chromestatus.com/feature/4672634709082112.

https://doi.org/10.1109/SP.2010.35
http://dx.doi.org/10.1109/SP.2010.35
https://www.smashwords.com/distribution
https://www.smashwords.com/distribution
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schwenk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schwenk
https://security.snyk.io/package/npm/electron
https://security.snyk.io/package/npm/electron
https://doi.org/10.2139/ssrn.1446862
https://doi.org/10.1109/SPW54247.2022.9833888
https://doi.org/10.1109/SPW54247.2022.9833888
https://doi.org/10.1145/2420950.2420987
http://doi.acm.org/10.1145/2420950.2420987
http://doi.acm.org/10.1145/2420950.2420987
https://doi.org/10.1145/1772690.1772784
https://doi.org/10.1145/1772690.1772784
https://doi.org/10.1145/1772690.1772784
https://www.chromestatus.com/feature/4672634709082112
https://www.chromestatus.com/feature/4672634709082112

BIBLIOGRAPHY 171

[Sta19] C. P. Status. Cookies default to SameSite=Lax. 2019. url: https:
//chromestatus.com/feature/5088147346030592.

[STK17] P. Snyder, C. Taylor, and C. Kanich. “Most websites don’t need to
vibrate: A cost-benefit approach to improving browser security”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM. 2017, pp. 179–194.

[Sto+17] G. Storey, D. Reisman, J. Mayer, and A. Narayanan. “The Future
of Ad Blocking: An Analytical Framework and New Techniques”.
In: (May 2017).

[Syn23a] Synopsys. Chromium (Google Chrome). 2023. url: https://open
hub.net/p/chrome/analyses/latest/languages_summary.

[Syn23b] Synopsys. Mozilla Firefox. 2023. url: https://openhub.net/p/f
irefox/analyses/latest/languages_summary.

[ŚZZ05] J. Śliwerski, T. Zimmermann, and A. Zeller. “When Do Changes
Induce Fixes?” In: Proceedings of the 2005 International Workshop
on Mining Software Repositories. MSR ’05. St. Louis, Missouri:
Association for Computing Machinery, 2005, pp. 1–5. isbn:
1595931236. doi: 10.1145/1083142.1083147. url: https://doi
.org/10.1145/1083142.1083147.

[Tru] Trunk Based Development. Introducion. url: https://trunkbase
ddevelopment.com/.

[Van+14] T. Van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and W. Joosen.
“Large-scale security analysis of the web: Challenges and findings”.
In: International Conference on Trust and Trustworthy Computing.
Springer. 2014, pp. 110–126.

[Van+22] T. Van Goethem, G. Franken, I. Sanchez-Rola, D. Dworken,
and W. Joosen. “SoK: Exploring Current and Future Research
Directions on XS-Leaks through an Extended Formal Model”. In:
Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security. ASIA CCS ’22. Nagasaki, Japan:
Association for Computing Machinery, 2022, pp. 784–798. isbn:
9781450391405. doi: 10.1145/3488932.3517416. url: https://d
oi.org/10.1145/3488932.3517416.

[Vas+18] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy. “FP-
STALKER: Tracking Browser Fingerprint Evolutions”. In: 2018
IEEE Symposium on Security and Privacy (SP). 2018, pp. 728–741.
doi: 10.1109/SP.2018.00008.

https://chromestatus.com/feature/5088147346030592
https://chromestatus.com/feature/5088147346030592
https://openhub.net/p/chrome/analyses/latest/languages_summary
https://openhub.net/p/chrome/analyses/latest/languages_summary
https://openhub.net/p/firefox/analyses/latest/languages_summary
https://openhub.net/p/firefox/analyses/latest/languages_summary
https://doi.org/10.1145/1083142.1083147
https://doi.org/10.1145/1083142.1083147
https://doi.org/10.1145/1083142.1083147
https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/
https://doi.org/10.1145/3488932.3517416
https://doi.org/10.1145/3488932.3517416
https://doi.org/10.1145/3488932.3517416
https://doi.org/10.1109/SP.2018.00008

172 BIBLIOGRAPHY

[VHS16] S. Van Acker, D. Hausknecht, and A. Sabelfeld. “Data Exfiltration
in the Face of CSP”. In: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security. ASIA CCS
’16. Xi’an, China: Association for Computing Machinery, 2016,
pp. 853–864. isbn: 9781450342339. doi: 10.1145/2897845.28978
99. url: https://doi.org/10.1145/2897845.2897899.

[VJ22] T. Van Goethem and W. Joosen. “Towards Improving the
Deprecation Process of Web Features through Progressive Web
Security”. In: 2022 IEEE Security and Privacy Workshops (SPW).
2022, pp. 20–30. doi: 10.1109/SPW54247.2022.9833872.

[VJN15] T. Van Goethem, W. Joosen, and N. Nikiforakis. “The Clock is Still
Ticking: Timing Attacks in the Modern Web”. In: Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications
Security. CCS ’15. Denver, Colorado, USA: ACM, 2015, pp. 1382–
1393. isbn: 978-1-4503-3832-5. doi: 10.1145/2810103.2813632.
url: http://doi.acm.org/10.1145/2810103.2813632.

[W3C] W3C. The history of the Web. url: https://www.w3.org/wiki
/The_history_of_the_Web.

[W3C19] W3C. EPUBCheck. GitHub, 2019. url: https://github.com/w3
c/epubcheck.

[Wan+19] X. Wang, K. Sun, A. Batcheller, and S. Jajodia. “Detecting “0-Day”
Vulnerability: An Empirical Study of Secret Security Patch in OSS”.
In: 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE. 2019, pp. 485–492.

[WBV16] M. West, A. Barth, and D. Veditz. Content Security Policy Level
2. W3C Recommendation. https://www.w3.org/TR/CSP2/. W3C,
Dec. 2016.

[WE20] A. Wirfs-Brock and B. Eich. “JavaScript: The First 20 Years”. In:
Proc. ACM Program. Lang. 4.HOPL (June 2020). doi: 10.1145/3
386327. url: https://doi.org/10.1145/3386327.

[Weba] WebKit. Intelligent Tracking Prevention. url: https://webkit.o
rg/blog/7675/intelligent-tracking-prevention/.

[Webb] WebKit. Tracking Prevention in WebKit. url: https://webkit.o
rg/tracking-prevention/.

[Webc] WebKit Bugzilla. Limit user agent versioning to an upper bound.
url: https://bugs.webkit.org/show_bug.cgi?id=180365.

[web] web-platform-tests. web-platform-tests documentation. url: https:
//web-platform-tests.org.

https://doi.org/10.1145/2897845.2897899
https://doi.org/10.1145/2897845.2897899
https://doi.org/10.1145/2897845.2897899
https://doi.org/10.1109/SPW54247.2022.9833872
https://doi.org/10.1145/2810103.2813632
http://doi.acm.org/10.1145/2810103.2813632
https://www.w3.org/wiki/The_history_of_the_Web
https://www.w3.org/wiki/The_history_of_the_Web
https://github.com/w3c/epubcheck
https://github.com/w3c/epubcheck
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327
https://doi.org/10.1145/3386327
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/tracking-prevention/
https://webkit.org/tracking-prevention/
https://bugs.webkit.org/show_bug.cgi?id=180365
https://web-platform-tests.org
https://web-platform-tests.org

BIBLIOGRAPHY 173

[Wei+16] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc. “CSP
Is Dead, Long Live CSP! On the Insecurity of Whitelists and the
Future of Content Security Policy”. In: Proceedings of the 23rd ACM
Conference on Computer and Communications Security. Vienna,
Austria, 2016. url: https://storage.googleapis.com/pub-too
ls-public-publication-data/pdf/45542.pdf.

[Wes23] M. West. Reporting security issues in specifications. May 2023. url:
https://github.com/whatwg/meta/issues/281.

[WG16] M. West and M. Goodwin. Same-Site Cookies. Internet-Draft draft-
ietf-httpbis-cookie-same-site-00. IETF Secretariat, June 2016. url:
https://tools.ietf.org/html/draft-ietf-httpbis-cookie-
same-site-00.

[Wi+23] S. Wi, T. T. Nguyen, J. Kim, B. Stock, and S. Son. “DiffCSP:
Finding Browser Bugs in Content Security Policy Enforcement
through Differential Testing”. In: NDSS. Feb. 2023. url: https:
//publications.cispa.saarland/3891/.

[Wil17] J. Wilander. Intelligent Tracking Prevention. June 2017. url: htt
ps://webkit.org/blog/7675/intelligent-tracking-prevent
ion/.

[Wis13] R. Wischenbart. The global eBook market: current conditions &
future projections. O’Reilly Media, Inc., 2013.

[WLR14] M. Weissbacher, T. Lauinger, and W. Robertson. “Why Is CSP
Failing? Trends and Challenges in CSP Adoption”. In: Research in
Attacks, Intrusions and Defenses. Ed. by A. Stavrou, H. Bos, and
G. Portokalidis. Cham: Springer International Publishing, 2014,
pp. 212–233. isbn: 978-3-319-11379-1.

[WS23] M. West and A. Sartori. Content Security Policy Level 3. W3C
Working Draft. https://www.w3.org/TR/CSP3/. W3C, May 2023.

[WW07] J. Williams and D. Wichers. “OWASP Top 10”. In: (2007). url: ht
tps://owasp.org/www-pdf-archive//OWASP_Top_10_2007.pdf.

[WW10] J. Williams and D. Wichers. “OWASP Top 10 - 2010”. In: (2010).
url: https://owasp.org/www-pdf-archive//OWASP_Top_10_-
_2010.pdf.

[WW13] J. Williams and D. Wichers. “OWASP Top 10 - 2013”. In: (2013).
url: https://owasp.org/www-pdf-archive//OWASP_Top_10_-
_2013.pdf.

[WW17] J. Williams and D. Wichers. “OWASP Top 10 - 2017”. In: (2017).
url: https://owasp.org/www-pdf-archive//OWASP_Top_10-20
17_(en).pdf.pdf.

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45542.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45542.pdf
https://github.com/whatwg/meta/issues/281
https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site-00
https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site-00
https://publications.cispa.saarland/3891/
https://publications.cispa.saarland/3891/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://webkit.org/blog/7675/intelligent-tracking-prevention/
https://owasp.org/www-pdf-archive//OWASP_Top_10_2007.pdf
https://owasp.org/www-pdf-archive//OWASP_Top_10_2007.pdf
https://owasp.org/www-pdf-archive//OWASP_Top_10_-_2010.pdf
https://owasp.org/www-pdf-archive//OWASP_Top_10_-_2010.pdf
https://owasp.org/www-pdf-archive//OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive//OWASP_Top_10_-_2013.pdf
https://owasp.org/www-pdf-archive//OWASP_Top_10-2017_(en).pdf.pdf
https://owasp.org/www-pdf-archive//OWASP_Top_10-2017_(en).pdf.pdf

174 BIBLIOGRAPHY

[Xia+20] G. Xiao, Z. Zheng, B. Jiang, and Y. Sui. “An Empirical Study
of Regression Bug Chains in Linux”. In: IEEE Transactions on
Reliability 69.2 (2020), pp. 558–570. doi: 10.1109/TR.2019.2902
171.

[Yen+12] T.-F. Yen, Y. Xie, F. Yu, R. (Yu, and M. Abadi. “Host
Fingerprinting and Tracking on the Web:Privacy and Security
Implications”. In: The 19th Annual Network and Distributed System
Security Symposium (NDSS) 2012. Internet Society, Feb. 2012.

[Yin+11] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram.
“How Do Fixes Become Bugs?” In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering. ESEC/FSE ’11. Szeged,
Hungary: Association for Computing Machinery, 2011, pp. 26–36.
isbn: 9781450304436. doi: 10.1145/2025113.2025121. url: http
s://doi.org/10.1145/2025113.2025121.

[Yu+16] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol. “Tracking the
Trackers”. In: Proceedings of the 25th International Conference
on World Wide Web. WWW ’16. Montréal, Québec,
Canada: International World Wide Web Conferences Steering
Committee, 2016, pp. 121–132. isbn: 978-1-4503-4143-1. doi: 1
0.1145/2872427.2883028. url: https://doi.org/10.1145/287
2427.2883028.

[ZAH11] S. Zaman, B. Adams, and A. E. Hassan. “Security versus
Performance Bugs: A Case Study on Firefox”. In: Proceedings of the
8th Working Conference on Mining Software Repositories. MSR ’11.
Waikiki, Honolulu, HI, USA: Association for Computing Machinery,
2011, pp. 93–102. isbn: 9781450305747. doi: 10.1145/1985441.19
85457. url: https://doi.org/10.1145/1985441.1985457.

[ZF08] W. P. Zeller and E. W. Felten. “Cross-Site Request Forgeries:
Exploitation and Prevention”. In: 2008.

[Zhe+15] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, T. Wan, and N.
Weaver. “Cookies Lack Integrity: Real-World Implications”. In: 24th
USENIX Security Symposium (USENIX Security 15). Washington,
D.C.: USENIX Association, 2015, pp. 707–721. isbn: 978-1-931971-
232. url: https://www.usenix.org/conference/usenixsecuri
ty15/technical-sessions/presentation/zheng.

https://doi.org/10.1109/TR.2019.2902171
https://doi.org/10.1109/TR.2019.2902171
https://doi.org/10.1145/2025113.2025121
https://doi.org/10.1145/2025113.2025121
https://doi.org/10.1145/2025113.2025121
https://doi.org/10.1145/2872427.2883028
https://doi.org/10.1145/2872427.2883028
https://doi.org/10.1145/2872427.2883028
https://doi.org/10.1145/2872427.2883028
https://doi.org/10.1145/1985441.1985457
https://doi.org/10.1145/1985441.1985457
https://doi.org/10.1145/1985441.1985457
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/zheng
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/zheng

List of publications

G. Franken, T. Van Goethem, and W. Joosen. “Who Left Open the Cookie
Jar? A Comprehensive Evaluation of Third-Party Cookie Policies”. In: 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 151–168. isbn: 978-1-939133-04-5

G. Franken, T. Van Goethem, and W. Joosen. “Exposing Cookie Policy Flaws
Through an Extensive Evaluation of Browsers and Their Extensions”. In: IEEE
Security & Privacy 17.4 (2019), pp. 25–34. doi: 10.1109/MSEC.2019.2909710

G. Franken, T. Van Goethem, and W. Joosen. “Reading Between the Lines:
An Extensive Evaluation of the Security and Privacy Implications of EPUB
Reading Systems”. In: 2021 IEEE Symposium on Security and Privacy (SP).
2021, pp. 1730–1747. doi: 10.1109/SP40001.2021.00015

T. Van Goethem, G. Franken, I. Sanchez-Rola, D. Dworken, and W. Joosen.
“SoK: Exploring Current and Future Research Directions on XS-Leaks through
an Extended Formal Model”. In: Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security. ASIA CCS ’22.
Nagasaki, Japan: Association for Computing Machinery, 2022, pp. 784–798.
isbn: 9781450391405. doi: 10.1145/3488932.3517416

Y. Dimova, G. Franken, V. Le Pochat, W. Joosen, and L. Desmet. “Tracking
the Evolution of Cookie-Based Tracking on Facebook”. In: WPES’22. Los
Angeles, CA, USA: Association for Computing Machinery, 2022, pp. 181–196.
isbn: 9781450398732. doi: 10.1145/3559613.3563200

G. Franken, T. Van Goethem, L. Desmet, and W. Joosen. “A Bug’s Life:
Analyzing the Lifecycle and Mitigation Process of Content Security Policy Bugs”.
In: 32nd USENIX Security Symposium (USENIX Security 23). Anaheim, CA:
USENIX Association, Aug. 2023, pp. 3673–3690. isbn: 978-1-939133-37-3

175

https://doi.org/10.1109/MSEC.2019.2909710
https://doi.org/10.1109/SP40001.2021.00015
https://doi.org/10.1145/3488932.3517416
https://doi.org/10.1145/3559613.3563200

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Leuven
gertjan.franken@kuleuven.be

https://www.distrinet.cs.kuleuven.be/

	Introduction
	Towards the World Wide Web
	More features, more problems
	Expanding attack surface
	Privacy impact

	Browser policies
	Same-Origin Policy
	Content Security Policy
	Same-site cookies
	Tracking protection

	=Browser engines for cross-platform development
	Research questions and objectives
	Cookie and request blocking policy implementation flaws
	Root causes of security policy implementation bugs
	Implications of browser engines in native applications

	Who Left Open the Cookie Jar?: A Comprehensive Evaluation of Third-Party Cookie Policies
	Introduction
	Background
	Cross-site attacks
	Third-party tracking

	Framework
	Framework design
	Test-case generation
	Supported browser instances

	Results
	Web browsers and built-in protection
	Browser extensions
	Same-site cookie

	Real-world abuse
	Use of bypass methods
	Evaluating unknown techniques

	Discussion
	Browser implementations
	Browser extensions

	Related work
	Conclusion

	A Bug's Life: Analyzing the Lifecycle and Mitigation Process of Content Security Policy Bugs
	Introduction
	Background
	Web browser development
	Content Security Policy

	Methodology
	Bug collection and reproduction
	Automated lifecycle identification
	Analysis

	Results
	Bug lifecycle
	Bug introduction
	Bug reporting
	Bug fixing

	Discussion
	CSP implementation flaws
	Improving bug handling
	Future work

	Related work
	Dynamic browser policy evaluation
	Vulnerability studies
	Content Security Policy

	Conclusion

	Reading Between the Lines: An Extensive Evaluation of the Security and Privacy Implications of EPUB Reading Systems
	Introduction
	Background
	EPUB technical standard
	EPUB reading systems
	Same-Origin Policy

	Motivation
	Intransparency
	Malicious EPUBs
	Tracking EPUBs

	Methodology
	Experimental design
	Evaluated EPUB reading systems

	Results
	Desktop
	Mobile
	Browser extensions
	Physical e-reader devices

	Case studies
	Apple Books
	EPUBReader extension
	Kindle

	Real-world analysis
	Malicious and tracking EPUBs in the wild
	Malicious EPUB distribution through self-publishing

	Discussion
	EPUB reading system implementations
	EPUB specification
	Responsible disclosure

	Related work
	Portable Document Format
	Comprehensive policy evaluations

	Conclusion

	Conclusion
	Summary of contributions
	Future work
	Comprehensive implementation verification
	Standardized language for bug reporting
	BugHog
	Browser engines in non-browser applications

	Thoughts on development and deployment
	Code base
	Bug prevention
	Bug handling
	Deployment of browser engines in native applications

	Concluding remarks

	Third-party cookie evaluation
	Test compositions
	Extension set population
	Bug reports and responses
	Built-in browser protection
	Extensions
	Same-site cookie

	Bug report search criteria and intention labeling
	Bug report search criteria
	Chromium
	Firefox

	Bug report distribution
	Revision intention labels
	Labeling process
	Label interpretation

	Additional reading system information
	Bibliography
	List of publications

